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Abstract—This paper integrates a multi-modal learning for-
mulation into classical AI planning. For sequential manipula-
tion tasks, planning with visual reasoning is challenging for
autonomous agents. We propose to optimize an autoencoder not
only on a regular image reconstruction but also jointly on a
natural language processing (NLP) task. In essence, a discrete,
spatially meaningful latent representation is obtained that enables
effective autonomous planning for sequential decision-making
problems only using visual sensory data. We integrate our method
into a full planning framework and verify its feasibility on the
classic blocks world domain [9]. Our experiments show that
using auxiliary linguistic data leads to better representations,
thus improves planning capability.

I. INTRODUCTION

As autonomous agents are endowed with well-studied and
fine-tuned perception as well as single manipulation skills, the
next frontier emerges as how to combine these skills to realize
tasks in more realistic settings. This necessitates a planning
capability to take sequential decisions. A typical planning
problem often involves an input state, a desired output state
and an action model. A classical planning algorithm then
treats this problem as a graph search, exploiting the action
model to explore starting from an initial state. While graph
search algorithms are usually efficient and fast, the action
model is often the bottleneck in realizing a fully automated
planning framework, especially when the observations are
high-dimensional. In order to effectively determine transition
rules, the action model requires an invariant, structured state
representation of the input state. However, capturing these
representations for scene images is a challenging task.

State representations, which can be continuous or discrete,
play a critical role for planning systems. While continuous
representations allow natural end-to-end training of state en-
coder and action models, thus enabling overall consistency
between these components, goal state verification cannot be
performed exactly. Methods using continuous representations
[18, 13] often deploy a metric function to measure how close
the current state is with respect to the goal state. This leads to
error aggregation, where short-term inaccuracies accumulate
into bigger long-term errors, thus is not particularly suitable
for long-horizon tasks. On the other hand, discrete state
representations facilitate trivial goal state verification, hence
particularly useful for graph exploration. To achieve this,
recent studies by Asai and Fukunaga [4], Asai [3] proposed
to add an activation layer to enforce discrete representations.
However, this makes it difficult when integrating the state

Fig. 1. Five samples of planning sequences (from top row to bottom row)
using M1 where the left-most and right-most images are specified as initial
and goal states, respectively.

encoder into an end-to-end framework or with an additional
training objective.

We propose to use Vector-Quantized Variational Autoen-
coder (VQ-VAE) [21] as a state encoder. VQ-VAE maintains
a dictionary of continuous embedding vectors, which acts as
a database to pair a key (continuous latents) with a query
(the input state). While the keys are differentiable, each of
them is represented by a discrete ID. VQ-VAE is trained using
likelihood and reconstruction loss functions. While likelihood
function is necessary to keep the latent space similar to
the image space, reconstruction loss optimizes to encode
non-essential scene elements (for example: background or
shadows). As a result, VQ-VAE becomes less robust when
encoding semantically identical scenes.

To overcome this challenge, we propose to jointly train
the state encoder with a visual-question answering (VQA)
framework in a pre-training step. Under this setting, our goal
is to encode image features which are important not only for
reconstruction but also for question-answering. In particular,
when the questions are about spatial relations, like those in
the CLEVR dataset [15], the visual reasoning ability of the
state encoder is supported.



We evaluated our state encoder in the classic blocks world
problem [2, 9]. To evaluate the effectiveness of our encoder,
we prepared two action models. The first action model is an
oracular model that observes all the possible state transitions,
then maps these transitions into a graph-like structure, similar
to [4]. Although this model is impractical in real use cases,
we intend to demonstrate that our learned representations are
feasible for planning. This is confirmed by achieving 100%
planning accuracy with the oracular model acting on our
learned representations. The second action model is stochastic
and observes only a part of the transitions. We evaluate how
this model can infer the next state representation using the
current representation. We are able to gain approximately 8.2%
in accuracy by using the VQA framework, which confirms a
higher quality of latent representation compared to using only
the reconstruction loss.

The main contributions of this work are:

• We implement Vector-Quantized Variational Autoencoder
(VQ-VAE) to obtain discrete state representations of large
scene images which are feasible for classical planning.

• We integrate an auxiliary question-answering loss during
a pre-training step to restrict the latent space, and further
improve visual reasoning capability of the framework.

II. RELATED WORK

Learning to act in latent space: Recent studies have
integrated generative models and self-supervised learning into
reinforcement learning formulations. A variational autoen-
coder (VAE) is used to encode raw image observations into
a latent space where a policy is trained [10, 18]. During
an iteration, this encoder can be trained before the policy
[18], or jointly trained with the policy [10]. The latter case
allowed the agent to encode relevant features for training but
required a hand-designed reward function. In [18], the agent
continuously samples and achieves a goal state by a simple
distance reward function (in the latent space), thus facilitates
the self-improvement of its general-purpose skills without a
hand-designed reward. However, both methods lack an action
model, hence can not sample the resulting state after applying
an action, rendering them inapplicable to classical planning.

Symbolic planning: Our work is inspired by the use of
symbolic planning [3, 7, 11, 13] for manipulation. Symbolic
planning allows us to disentangle the input scene, thus reduces
the amount of training data. However, symbolic planners do
not work out of the box with continuous state representations.
Huang et al. [13] overcame this challenge by relaxing the
discrete requirement of symbolic planners. This method ap-
plies only the actions with the highest chance of satisfying
preconditions. Since these actions are not necessarily the
optimal actions, the resulting plan is suboptimal. On the other
hand, there is a different line of research which tried to obtain
discrete state representations to be compatible with existing
classical planning. Asai and Fukunaga [4] added a Gumbel-
softmax [14, 17] layer to enforce discrete outputs. While being
plannable, these representations are not ideal to be integrated

in any end-to-end framework, thus making them difficult to
train with any additional objectives.

Inductive prior: Annotated data is often expensive and not
always available. One of the most commonly proposed solu-
tions is unsupervised learning of a pre-trained representation.
The main idea is trying to make a good use of largely available
unannotated datasets (images [12], natural languages [1, 6],
offline exploratory data [22]), obtaining inductive priors which
empower pre-trained models. In Andreas et al. [1], which
is a close work to ours, the training phase is divided into
two phases. In pre-trained phase both a sampler of missing
language data in the downstream task and a shared param-
eter space are learned, and in concept-learning phase the
parameter space is fine-tuned on the downstream task. During
the concept-learning phase, the sampler is used to sample
any absent parameter in the downstream dataset. The main
difference between Andreas et al. [1] and our work is that we
merge pre-trained and concept-learning phases into a single
step. Therefore, our framework is unified and naturally solves
the problem of absent parameters in the downstream task.

III. PROBLEM DEFINITION

We focus on solving planning problems for sequential
robotics manipulation tasks autonomously. Our objective is
to achieve physical reasoning by only visual perception and
without human-designed logical rules for high-level action
selection. The goal is to find an action sequence a1:N , given
an image of the scene x0, and a goal state description vgoal,
e.g., red box is above yellow box,

argmin
a1:N

N∑
i=1

H(zi−1, ai) (1)

s.t. z0 = G(x0), zN = G(F(vgoal)),

zi+1 =M(zi, ai), ai ∈ A

where H defines the optimality criterion, z0, zN is the initial
and final latent states encoded by G, M is an action model,
F is a mapping from the text space to the image space, and
A is a fixed set of actions (Fig. 5). Note that this formulation
is generalizable to whether the goal state is in the image or
the text space. We aim for this generalization since textual (or
verbal) goal state vgoal is reasonable in real-world settings.
We do not focus on deriving such F in this work, instead we
relax this constraint and use xgoal, i.e., G(F(vgoal)) ' G(xgoal).

IV. METHODOLOGY

First, we describe how to realize G in section A. Then, we
describe two possible action models M1 and M2. These ac-
tion models are used to integrate G into a planning framework
to solve for equation (1).

A. State encoder

To realize G, we propose to use a Vector Quantized -
Variational AutoEncoder (VQ-VAE) [21] to directly encode
raw images into propositions under a multi-modal training
scheme. The latent vector z in VQ-VAE is an ordered set of L



Fig. 2. Qualitative results of our reconstructed images when trained under three schemes. From top to bottom: first row: real images, second row: reconstructed
images using only DKL loss, third row: reconstructed images using only Lrec loss, fourth row: reconstructed images using both losses.

differentiable, pre-defined, continuous embedding vectors ei,
i.e., z = {ei | ei ∈ RK×D, 1 ≤ i ≤ K}, |z| = L, where ei
are D-dimensional selected from the embedding space of size
K and L < K. Observe that z can be uniquely represented
by indices of embedding vectors ei in the embedding space,
therefore facilitating trivial goal state verification while keep-
ing the stochastic nature as ei are continuous. This is crucial
for our training settings where z is jointly optimized with an
auxiliary linguistic task.

In order to make use of linguistic data, we propose to jointly
train G (which is a VQ-VAE) in a visual-question answering
(VQA) framework (Fig. 6). Given an image x, a question w1:T

which is a sequence of T words wi, the VQA framework
returns an answer by forming a distribution over a fixed set of
answer Y, i.e., p(yj |·) where 1 ≤ j ≤ |Y|. Under this setting,
our goal is to encode image features which are important not
only for reconstruction but also for question-answering. Hence,
when the questions are about spatial relations, like those in
the CLEVR dataset [15], the autoencoder focuses more on the
semantically essential scene elements.

To process the textual data, we use a relation network [19],
p(yj |·) = RN(x,w1:T ) = RNx (w1:T omitted for brevity).
Our full training objective becomes:

LG = αLrec(xrec, x) + βDKL(RNxrec ‖ RNx) + Llh (2)

where Lrec is the mean squared error loss, DKL is the Kull-
back–Leibler divergence loss, and Llh is the log-likelihood loss
originally presented in [21]. We keep the log-likelihood loss
in all of our experiments.

B. Action model

In order to solve for equation (1), an action model M is
missing. We evaluate G with two action models.

1) Oracular action model: The oracular action model M1

observes all the possible state transitions in the state space,
therefore z̃i+1 = M1(zi, ai) is exactly equal to zi+1 where
zi+1 and z̃i+1 are the ground-truth and predicted resulting state
of applying an action ai to a state zi.

2) Stochastic action model: Our stochastic action model
M2, which is inspired by Asai and Fukunaga [4], has two
components: action policy π and action discriminator D.
• The π network is trained on transition pairs

(G(xi), ai,G(xi+1)) where ai is the action which
transitions the scene image xi to xi+1. π samples the
result state after applying an action to one state, i.e.,
z̃i+1 = π(zi, ai) and zi = G(xi). To train π, we use a
contrastive learning objective function similar to [16]:

Lπ = d(z̃i+1, zi+1) + max(0, γ − d(z̃i+1, z
neg
i+1)) (3)

where d is the squared difference, γ is a hyper parameter
(γ = 1 during our experiments [16]), and zneg

i+1 are
negative examples, sampled from the same training batch.

• The D network decides which action is applicable given
a state, i.e., D(zi) = {uj | 1 ≤ j ≤ |A|}, uj ∈ {0, 1}}
where uj = 1 if aj is applicable to state zi. To train D,
we use binary cross-entropy (BCE) loss in a multi-label
classification manner:

LD = BCE(D(zi),U) (4)

where U = {uj}.
We found that the D component often performs much better
than the π component (apprx. 94% vs. 65% accuracy, respec-
tively) on the test set. Since the accuracy of π appears to be
the bottleneck ofM2, our analysis focuses on this component.

V. EVALUATION

We evaluate our method based on three criterion: reasoning,
planning, and efficiency. Our experiments are based on the
following setting: (1) we train the state encoder G using the
CLEVR dataset [15], (2) we use G to encode the scene images
of the photorealistic Blocks world dataset [2] to evaluate our
overall planning framework.

Reasoning: We analyze our VQA framework with three dif-
ferent objective functions (Table I). We trained the framework
with CLEVR dataset [15] for 150 epochs over the full training
set. The training set consists of 70 000 images and 699 989
questions. With the DKL objective, our state encoder reasoning
shows better performance than using only Lrec on the held-out



TABLE I
REASONING AND RECONSTRUCTION PERFORMANCE

Loss function QA accuracy Reconstruction error

KL-Divergence only 0.932923 0.118789
Reconstruction only 0.676227 0.000464

Both 0.931829 0.002303

Fig. 3. Accuracy of the stochastic action model overtime on the training
(left) and test (right) sets using representations acquired by only DKL loss
(green line), Lrec loss (blue line), and both (red line).

test set. Figure 2 shows reconstructed images in each case. We
observe that when using only DKL loss, the framework tends
to neglect unnecessary details (e.g. background, shadows) as
reflected by its larger reconstruction error but with a high QA
accuracy.

Planning with M1: Following Asai and Fukunaga [4],
we show that our learned representation is compatible with
planning algorithms, for example, with a breadth-first search
graph exploration. Note that one can achieve a planning
accuracy of 100% with M1 on one condition: each state is
uniquely encoded. With VQ-VAE, we fulfill this condition,
thus achieve the absolute planning accuracy usingM1 (Fig. 1
and Fig. 9). Similar to [5], we challenged this uniqueness
under noisy settings. Each scene image is perturbed with
noise sampled from a standard normal distribution (Fig. 8)
N (0, 1), i.e., x̃i = xi+αu where α is a noise magnitude and
u ∼ N (0, 1). Our latent representations are less affected by
noise, as shown by smaller deviation between G(xi) and G(x̃i)
(Fig. 7), when trained with DKL loss. However, the effects are
magnified under heavier noise (α > 0.01).

Planning with M2: We evaluate our learned representa-
tions in a stochastic manner with another action model, M2.
We first encode all the transitions in the problem domain of
5 objects and 3 stacks and use these transitions to train M2.
After training, we evaluate M2 using the transitions in the
problem domain of 4 objects and 3 stacks. We report the
accuracy by comparing the predicted latent z̃to =M2(zfrom, a)
to the ground-truth latent zto, i.e., accuracy = 1

M
1
N

∑∑N
i=1 ui

where M is the size of the test set, znm is the n-th bit of
the latent zm (1 ≤ n ≤ N ), and ui = 1 if z̃ito = zito
and 0 otherwise. For this action model M2, our experiment
shows that the latent representation trained with DKL objective
enables easier learning of transition rule even when G does not

Fig. 4. Planning (left) and QA (right) accuracies using different latent sizes.

observe the action data [2] (Fig. 3).
Efficiency: We investigated the effect of the latent vector

dimensionality, i.e., dim(G(x)) = (o, 32, 32) where o ∈
{8, 16, 32, 64}. We kept o = 64 for all the previous exper-
iments. Due to computational time constraints, we used a
subset of the CLEVR dataset [15] consisting of only 50 000
questions. We train our VQA framework using this smaller
version under two settings: optimizing only Lrec loss and both
DKL and Lrec loss. With DKL loss, our state encoder achieves
better QA and planning accuracy even for smaller latent sizes
(Fig. 4).

VI. CONCLUSION

We introduced a novel method to train a state encoder
and integrated it into a classical planner. We are able to
obtain latent representations that are higher quality in terms
of visual reasoning, and thus feasible for planning. We also
presented a full symbolic planning framework to readily unify
with the state encoder. Our experiments demonstrate better
performance of the whole system when pre-trained with the
proposed multi-modal scheme.

The limitation of our framework lies at the π component
of the action model. While doing sufficiently well in our toy
experiment [2], π has to perform better to be effective under
more complex settings. Another aspect, which renders our
framework semi-automatic, is that a set of actions A must
be defined explicitly. A fully autonomous agent has to learn
applicable actions and their effects itself. This work takes the
first steps towards achieving this goal.

While classical AI planners are efficient and optimal, high-
dimensional state representations, such as visual data, hinders
their applicability on real-world robotic manipulation prob-
lems [8]. Our work hopefully sheds light on how to obtain such
representations by taking advantage of auxiliary (linguistic)
data. The presented planner is ready to realize high-level plans,
and can be integrated into a motion planner (e.g., [20]) for
robotic sequential manipulation tasks.
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APPENDIX

Fig. 5. An overview of our planning framework as formalized in Eqn. 1.

Fig. 6. An overview of a forward pass through our VQA framework from
inputs (depicted in red color) to outputs (depicted in green color).

Fig. 7. Absolute difference of latent representations when encoded under
noisy versus normal setting.

Fig. 8. Reconstruction quality under different magnitudes of addition noise.
From left to right: six noise levels: 0.001, 0.003, 0.005, 0.01, 0.1, and 1. From
top to bottom: real images, reconstructed images using only DKL loss, using
only Lrec loss, and both.



Fig. 9. Some more plan sequences using M1.
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