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Abstract: We present a self-supervised representation learning approach for vi-
sual reasoning and integrate it into a nonlinear program formulation for motion
optimization to tackle sequential manipulation tasks. Such problems have usu-
ally been addressed by combined task and motion planning approaches, for which
spatial relations and logical rules that rely on symbolic representations have to be
predefined by the user. We propose to learn relational structures by leveraging
visual perception to alleviate the resulting knowledge acquisition bottleneck. In
particular, we learn constructing scene-graphs, that represent objects (“red box”),
and their spatial relationships (“yellow cylinder on red box”). This representation
allows us to plan high-level discrete decisions effectively using graph search al-
gorithms. We integrate the visual reasoning module with a nonlinear optimization
method for robot motion planning and verify its feasibility on the classic blocks-
world domain. Our proposed framework successfully finds the sequence of actions
and enables the robot to execute feasible motion plans to realize the given tasks.
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1 Introduction

Sequential robotic manipulation tasks require long-term reasoning and planning capabilities. Au-
tonomous agents have to keep track of available internal and external states and reason about how
those states change if they interact with the environment. The spatial relations within the environ-
ment, including both the robot and the objects, determine the feasible actions and thus the sequence
of decisions. Due to this interdependence, planning methods have to consider the logical state tran-
sitions and the geometric constraints jointly while searching for a solution. Even though classical
planners in AI literature are very effective for high-level action planning [1, 2], geometric constraints
and visual representations have been largely neglected [3, 4]. In essence, structured visual represen-
tations enable additional reasoning capabilities for autonomous robots to support their long-term
decision-making skills.

Sequential manipulation problems require (i) planning high-level discrete actions that have to sat-
isfy pre- and post-conditions, simultaneously with (ii) finding continuous motion paths that have
to satisfy low-level constraints such as kinodynamic limits, or collision avoidance. To tackle this
hybrid nature of such problems, existing combined task and motion planning (TAMP) methods rely
on symbolic representations and first-order predicate rules for the action planning while using either
sampling-based [5, 6, 7, 8, 9] or optimization-based [10] planners for computing the robot motion
path. Predicates for the spatial relationships and the action transition rules that determine the logical
and geometric constraints are defined a priori by the user. To enhance their autonomy, robots should
learn and plan based on relational representations, transition rules, and their implied constraints by
relying on their sensory data. Acquisition of such relational models poses a major challenge for pro-
viding more autonomy for the robots and also for scaling TAMP frameworks. Planning high-level
actions autonomously could be facilitated by learning spatial relations in a self-supervised fash-
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ion. The relational structures, in turn, can be integrated with effective motion planners to realize
sequential manipulation tasks.

We present a high-level planner that perceives visual inputs as commands and realizes the high-level
action sequence. Our planner first captures the symbolic representations of the input scenes in the
form of scene graphs (SGs) [11]. This is possible via an encoder network that transforms visual input
into a local (relative to the view) coordinate system. Inside this imaginary coordinate system, we use
the k-means algorithm to group coordinates into clusters, then effectively infer spatial relationships
among clusters and objects in each of the cluster. These spatial relationships are built into triples
which are combined to form a SG. Since these SG representations are symbolic, we can use generic
graph exploration methods to search for the optimal action sequence to reach the goal state from an
initial scene. This action sequence is then passed to a motion-planner to find a plan and subsequently
execute it. We demonstrate our approach on the classical example of the Blocks-world task [12],
i.e., given several stacks of different objects, the agent reorders them autonomously to obtain a final
configuration. Thus, as the main contributions of this work:

• We implement an encoder network as a visual module which allows for learning relative
coordinates in a self-supervised way,

• We exploit this visual module to map a scene image into a scene-graph which is an invariant
representation feasible for planning,

• We present a unified framework comprising learning and TAMP directly from visual data
to solve sequential robotic manipulation tasks effectively.

2 Related Work

Symbolic Planning Our work is partially inspired by the use of symbolic planning in various do-
mains [4, 13, 14]. Symbolic planning with graph search algorithms are usually optimal and fast [15],
thus particularly suitable for long-horizon planning. However, symbolic planners require discrete
state representations, and hence do not work out of the box with continuous representations. Acquir-
ing such a representation only from visual input is a challenging task. To overcome this challenge,
recent work either relaxes the discrete requirement of symbolic planners [14] or enforces discrete
state spaces [3, 4] using a Gumbel-Softmax [16, 17] function. However, since both methods work
with non-symbolic, unstable representations, the constructed action models are suboptimal [14] and
not robust [3, 4]. Since symbolic representations are the core component of such planners, we pro-
pose a method to acquire these representations reliably.

Sequential Manipulation Planning Sequential planning in robotics has been mostly investigated
in two largely disconnected subfields: task and motion planning and reinforcement learning. Task
and motion planning methods tackle the problem of integrating high-level actions with low level
constraints effectively by relying on the domain knowledge. Such a method incorporates action
constraints as (in)equality constraints into either a sampling-based motion planner [5, 6, 7, 8, 9] or
a non-linear program (NLP) [10, 18]. This program then jointly optimizes the action feasibility and
the motion trajectory to output a motor plan. However, TAMP formulations require the user to pre-
specify possible actions and their pre- and post-conditions to impose constraints. Most importantly,
the input state and the desired output state need to be symbolic, rather than more flexible definitions,
such as images in recent reinforcement learning approaches.

Deep reinforcement learning approaches have recently been successfully used for robot skill ac-
quisition tasks by learning control policies for motor skills from image pixels [19, 20, 21]. While
showing great results in learning manipulation skills, these approaches are not particularly suitable
to find a sequence of high-level actions that fulfill a set of goals (e.g., given as a set of spatial re-
lations, “yellow cylinder on red box” and “red box on first stack”), from a given initial state that
requires multiple different actions, such as pick, place, push, etc. This is partially due to the fact that
each of the actions impose different geometric and dynamic constraints, leading to an impractical
amount of data needed to train such a policy.

Combining the two approaches helps to learn heuristics to guide the exploration of the possible
actions [22, 23, 24], or to learn new action-primitives [25]. In this work, we propose a learning
approach to find a representation of the scene that supplements combined task and motion planning.

2



Figure 1: Flow of the proposed framework. Left: High-level action planning: a visual reasoning
module consisting of a scene graph (SG) representation (Sec. 4.1.3) and an action model (Sec. 4.2),
and Right: Motion optimization: a nonlinear programming (NLP) component (Sec. 3).

3 Problem Statement

This works relies on the NLP formulation of the Logic-Geometric Programming (LGP) frame-
work [10, 26] to combine visual reasoning for task planning with an effective constraint optimization
method for path planning. LGP formulates a constrained optimization problem based on the logical
and geometric constraints imposed while solving a combined task and motion planning problem.
We focus on solving similar TAMP problems for sequential robotic manipulation. However, our
objective is to complement physical reasoning by visual perception for high-level action selection.
In essence, the logical planning is delegated to a visual reasoning component, whereas existing
TAMP methods, including the LGP, use first-order predicate language rules. Accordingly, in our
formulation only the geometric constraints are imposed by this high-level planning on the NLP. This
modification on planning still allows us to use the original NLP formulation of the LGP only with
slight changes (Fig. 1). Let X ⊂ Rd × SE(3)N be the configuration space of N rigid objects and
a robot with d degrees-of-freedom with initial condition x0. Given a goal description g, we aim to
find a sequence of actions ar1:K and a path x : [0,KT ]→ X that minimizes a state-dependent cost:

min
x,K,

ar
1:K ,s1:K

∫ KT

0

c(x(t), sk(t)) dt

s.t. x(0) = x0, s0 = s̃0, hgoal(x(KT ), g) = 0

∀t ∈ [0,KT ] : hpath
(
x(t), sk(t)

)
= 0, gpath

(
x(t), sk(t)

)
≤ 0

∀k ∈ 1, . . . ,K : hswitch(x̂(t), a
r
k) = 0, gswitch(x̂(t), a

r
k) ≤ 0

ark ∈ Ar(sk−1), sk ∈ q(sk−1, ark), (1)

where x = (x, ẋ, ẍ) and x̂ = (x, ẋ). s̃0 describes the initial geometric constraints, gpath and hpath,
the (in)equality constraints for the motion path, and hswitch and gswitch, the transition conditions
between kinematic modes, respectively. Symbolic state sk defines the constraints at each phase, and
determines the available actions from the set Ar. The key difference is that we partially decouple
the logical action search component from the NLP. As the spatial relations are defined by visual
representations generated from images, high-level action planning is solved by the graph search
algorithm acting on the SGs (Sec. 4). In particular, the goal of the visual planner ψ is to find an
action sequence av1:Kv , given an image of an initial scene u0, and a desired scene ug,

argminav
1:Kv

Kv∑
i=1

cv(zi−1, a
v
i )

s.t. z0 = G(u0), zN = G(ug),

zi+1 =M(zi, a
v
i ), avi ∈ Av (2)

where cv defines the optimality criterion, z0, zN is the initial and final SG representations encoded by
the visual module G,M is a symbolic action model,Av is a fixed set of high-level actions, andKv is
the number of high-level actions. Given the action sequence found by the visual planner, we extract
low-level actions for the robot ar1:K = p(av1:Kv ) and the geometric constraints s1:K = q(ar1:K)
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Figure 2: A forward pass from the input scene image to the reconstructed scene image, through the
visual module G with the coordinate regressor π and the affine grid sampler ρ.

(Fig. 1). Note that K does not necessarily have to be equal to Kv , e.g., a single high-level move
action might be broken down to two low-level robot pick and place actions. Those actions ar1:K
along with their implied geometric constraints s1:K form the constrained optimization problem to
be solved to compute the optimal motion path for the given plan that realizes the goal.

4 Method

We present a unified framework to solve sequential robotic manipulation tasks. The three main
components of this framework are a visual module G, a symbolic action model M, and an NLP
solver for motion planning. The basic forward pass from an input scene image to a goal scene image
is as follows: (i) we capture scene graphs (SGs) from the image pair (u0, ugoal) using the visual
module G (Fig. 2), then (ii) use the action modelM to realize a high-level plan from u0 to ugoal, and
last, (iii) exploit the NLP formulation to convert the high-level plan into atomic actions along with
their implied constraints and compute the optimal motion path for the realization of the plan by the
robot.

4.1 Visual module G

The visual module G assumes that input scene images contain bounding boxes of N scene objects.
This assumption is reasonable since such bounding boxes are readily available within a simulation
environment, and also there exists several robust methods to acquire them for real-world tasks [27,
28, 29]. After computing the bounding boxes, we split the scene image into N different images.
Each of these images contains exactly one bounding box, i.e., a mask, of one scene object. The
module G then consumes one image at a time to encode a coordinate vector for this specific object.
This coordinate vector lives in a relative coordinate system which has the origin at the bottom left
corner of image. We proceed to present first, how to realize G, and then how to train the visual
module in a complete self-supervised manner, and last, how to transform N coordinate vectors to a
SG describing spatial relations between N objects.

4.1.1 Architecture overview

The visual module G consists of two sub-modules: coordinate regressor π and affine grid sampler
ρ (illustrated by the red boxes in Fig. 2). Note that the visual module G is similar to the Spatial
Transformer Network by Jaderberg et al. [30]. The only difference is that G only works with the
translation vector φ instead of the full 3 × 3 transformation matrix. Next, we explain the details of
those components and how they are combined.

π - Coordinate regressor: The coordinate regressor infers a vector φ from a mask image ui, i.e.,
φ = π(ui) where φ ∈ R2, ui ∈ R128×128×3. The vector φ denotes how far the object should be
from the bottom-left corner (depicted in the fourth column of Fig. 2). The backbone of the π module
is a Res-Net34 network [31]. This module is pre-trained 1 on the ImageNet dataset [33]. We replace
the last layer with a fully-connected layer to output φ. Note that it is possible to train φ using the
gradient feedback from ρ (detailed below) via Eq. (3).

1The pre-trained weights are available in the TorchVision library [32].
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Figure 3: An overview of how the graph search is done using the symbolic action modelM and
the SG representation.

ρ - Affine grid sampler: The affine grid sampler takes the vector φ and transforms a default matrix
udef (depicted in the fifth column of Fig. 2) into the desired location which is implied by φ, i.e.,
ũi = ρ(φ, udef

i ). The module ρ is differentiable, hence providing feedback on how to spatially
transform the default matrices udef

i , i.e., optimizing φ from π according to a label signal.

4.1.2 Training objective

We train the visual module in a complete self-supervised manner. Our training objective is

l = lmse

(
N∑
i=1

ũi,

N∑
i=1

ui

)
+

N∑
i=1

lmse (ũi, ui) (3)

where lmse is the mean squared loss, ui and ũi are the ground-truth and predicted images, which
contain only the bounding box of scene object oi.

∑N
i=1 ũi and

∑N
i=1 ui are the reconstructed and

true scene images, respectively. We compute ũi by ũi = ρ(π(xi), u
def
i ) where udef

i is the default
matrix in which the bounding box of oi is located at the bottom left corner (Fig. 2).

4.1.3 Coordinates to SG

Our SGs are a set of triples {o1, e, o2}, where e ∈ {left,up} describing the spatial relations between
object o1 and object o2 (Fig. 3). We first use the k-means clustering algorithm [34] to group horizon-
tal coordinates into m clusters, where m is the number of stacks. Here, m is prespecified, however
can be discovered automatically (see sec. 7.1 of the sup. mat.). Then, within each cluster, we simply
construct up relations by comparing vertical coordinates. Finally, we add left relations by comparing
horizontal coordinates of the bottom objects of each cluster. Note that down and right relations are
covered as well thanks to this SG representation of triples.

4.2 Symbolic action model

After capturing the SGs for the initial and goal scene images, we deploy an action model to search
for the action sequence. Note that this action model is oracular since we pre-define a set of actions
Av = {(p, q)|1 ≤ p, q ≤ m}, where m is the number of stacks in the scene. This means that
if the visual module G correctly captures the SGs for the image pair (u0, ugoal), the action model
is guaranteed to find the optimal plan if the goal can be satisfied. This is possible as our planner
relies on SG representation for intermediate states. To find the action sequence, we start from the
input SG, use this action model to explore the neighboring graphs from the action set, and add
these neighboring graphs into a queue-like data structure (Fig. 3). The search can be breadth-first
or depth-first, although we use the former in our experiments. The search stops when it reaches the
goal SG zgoal which is either encoded by ugoal or user-specified (see Fig. 5 for sample plans).

4.3 Motion planner

Actions from the high-level plan of the visual module are divided into micro actions, ar1:K =
p(av1:Kv ), which in turn define the geometric constraints s1:K = q(ar1:K) (Sec. 3) [10]. Given those
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Figure 4: Keyframes for each pick and place action starting from (top-left) the initial state till
(bottom-right) the goal.

Table 1: Performance on different evaluation datasets.

Dataset Accuracy IoU
Dpbw-all (6 objects, 3 stacks) 0.889 0.740
Dsim-all (6 objects, 3 stacks) 0.867 0.739
Dsim-20k (7 objects, 3 stacks) 0.884 0.714
Dsim-20k (6 objects, 3 stacks, camera view +2◦) 0.882 0.584
Dsim-20k (6 objects, 3 stacks, camera view +10◦) 0.881 0.561
Dsim-20k (6 objects, 3 stacks, camera view +15◦) 0.843 0.529
Dsim-all (6 objects, 3 stacks, trivial COCO [37] masks) 0.873 0.693

constraints, we use KOMO (k-order Markov optimizer) [35], and the changes introduced in [26]
which make the solver more robust, to solve the TAMP problem (Eq. (1)). KOMO represents the
trajectory directly in configuration space, and uses a Gauss-Newton solver to solve the discretized
optimization problem.

5 Experiments

As a representative sequential decision-making and manipulation scenario, we tested our methods
on a stacking problem with the PR2 robot in simulation (Fig. 4). For the visual module, we also
evaluated its robustness and generalization capabilities on a photorealistic image dataset in detail.
Since our method is self-supervised, and is able to re-calibrate to adapt to novel scenes, we do not
aim for a universal generalization of all scene objects or camera views. Having said that, we perform
experiments to investigate the robustness properties for practical use-cases. This analysis can be
useful to understand when the model needs to be re-calibrated, which can be achieved automatically
using the Intersection-over-Union (IoU) indicator [36].

5.1 Setup

We evaluate our framework using the Blocks-world task [12] where we fix the number of stacks
m = 3, and the set of actionsAv = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1)(3, 2)}. The action avi = (p, q)
means move the object at the top of stack p to stack q. We utilize two different graphics engine to
collect the data. The first engine [38] is used to render photorealistic images to collect the dataset
Dpbw. The second dataset Dsim [10] is obtained from our own simulator which is visually simpler
but allows for robotic manipulation planning and control experiments. We train two G’s on the state
space of the 5-object task and evaluate on the 6-object task on Dpbw and Dsim.

5.2 Results

Since our action modelM is oracular, the planning accuracy depends on whether G correctly cap-
tures the scene graphs (SGs) of the desired scene images. Therefore, we focus our analysis on
the performance of G. We report the IoU metric (Fig. 9) and the SG prediction accuracy for our
experiments (Tab. 1). The IoU is computed between the true ui and the predicted ũi mask images.

Large scale analysis: We show that our method, when trained on the task of 5 objects and 3 stacks,
generalizes well to higher dimensional task, e.g., 6 or 7 objects. This is reflected by the good SG
prediction accuracy and IoU metric (first 3 rows of Tab. 1). During plan execution, the robot may
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Figure 5: Three sample plans. Initial images u0 are the left-most images of each row. Desired rela-
tions zgoal (the right-most column) are specified as textual commands instead of desired images ugoal,
which is also possible (see Fig. 12 in Appendix). (Green, top-left corner) Action that transitions the
current state to the next. Action notation follows Sec. 4.2 and Sec. 5.1.

change its camera view, thus we also analyze whether this change may affect our method. We test
the same G on datasets with different views. We observe a decreasing trend in IoU, however, the
performance is still sufficient to retain accuracy in predicting SGs (Tab. 1 rows 4-6). We also replace
the bounding boxes of objects in Dsim-all with random object masks from the COCO dataset [37].
We train the same G using these random masks, and obtain similar results (see last row Tab. 1). This
suggests that our framework works with arbitrary object appearance.

Fine scale analysis: We conduct fine-scale experiments to understand whether our model gener-
alizes to different shapes or colors. We artificially construct objects of 3 different shapes (circle,
square, and triangle) and 14 different colors. We evaluate the visual module G which is trained on
Dsim, and report the variance of the IoU as 0.0055 for shape and 0.001 for color changes. This
analysis suggests that our model is more sensitive to change in color rather than in shape.

Robot manipulation experiments: We test the proposed framework on a robotic sequential ma-
nipulation task. The setting is similar to the blocks-world problem but constructed in our simulator.
The robot successfully executes plans proposed by the visual reasoning module (see supplementary
video). Even though the original LGP formulation struggles to solve problems involving many ob-
jects (e.g., # of objects N ≥ 5) and which requires long action sequences (e.g., action sequence
length K ≥ 6) [22], our framework efficiently solves such problems in this blocks-world domain,
where we have 6 & 7 objects in the scene and the solutions require action sequences with length
K ≥ 6. We note that comparing the runtime performance of our method to the original LGP is not
informative on its own, as this work is based on a more robust version of the optimizer described
in [26]. We merely want to point out that the visual representations learned by our method proves
to be a useful and feasible component to support task and motion planning approaches for practical
scenarios where the robot has to rely on its visual perception.

Extension to realistic tasks: For applicability of our approach to real-world settings, we show
a couple of straightforward extensions. First, we incorporate geometric constraints in addition to
spatial relations among objects, e.g., spherical objects cannot be used as a base (Fig. 6). These
constraints help to reason about stacking stability, thus allow for safer manipulation. Since each
object has different geometric and dynamical properties, these can also be inferred by more advanced
object detection methods, which in turn supports the intuitive physical reasoning of the autonomous
agent [39]. We suggest one possible extension following this idea in Sec. B.2 of the appendix.
Second, our method can be further developed to reason about the 3-D world using a depth sensor. By
leveraging this depth information, we implemented a pre-checking subroutine to handle occlusion.
Fig. 7 illustrates some planning samples under this setting. We detail the pre-checking subroutine in
Sec. B.3 of the appendix.

6 Discussion

Here we discuss the main limitations and assumptions of our work, and provide possible directions
for future work to address those issues.

We make two assumptions within this work. First, we assume that we have access to the bounding
boxes of scene objects rather than just raw scene images. From such a segmented scene image, we
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Figure 6: A sample plan when stability is enforced (top) and not enforced (bottom). Note that the
former plan does not involve stacking any object on top of the sphere.

Figure 7: Plan sequences for 2 scenarios with 3-D relationships, starting from (left-most) the initial
scene till reaching (right-most) the goal.

then extract individual objects to infer the respective coordinates. Even though this is a reasonable
assumption as there are many state-of-the-art object detection methods [27, 28, 29], it can be relaxed
by adapting an unsupervised scene decomposition technique [40].

Second, our current setup is highly structured, where we assume a fixed setup of 3 stacks in the
scene, thus set k = 3 in the k-means algorithm. However, this is not a hard requirement since it is
possible to infer k using a simple image processing algorithm (see Sec. B.1).

Our experimental results demonstrate a good accuracy for novel environmental settings (6 & 7 ob-
jects). To deal with a possibly incorrectly predicted image-pair, two approaches are feasible: (i) Our
planner can output a planning solution with a confidence score using the IoU metric, which indicates
the plan reliability. This might trigger either a view change on the robot for better observation, or a
query for clarifying the goal, and (ii) our framework can be extended to work in a reactive way by
closing the loop from the robotic action execution to the visual reasoning part. In essence, the visual
planner can verify if the plan is executed properly and adjust the plan whenever necessary.

7 Conclusion

This paper proposes a simple yet useful visual reasoning method which we combine with a nonlinear
program to solve sequential robot manipulation tasks. The scene-graph representations are learned
in a self-supervised fashion, which encourages the integration of such spatial relation learning ap-
proaches into task and motion planning methods. These representations not only are interpretable,
but also have the potential to generalize to novel settings due their invariance property. Relational
structures learned autonomously by robots have the potential to improve the long-term autonomy of
intelligent agents.
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models of robot skills for task and motion planning. arXiv e-prints, art. arXiv:2006.06444,
June 2020.

[26] V. N. Hartmann, O. S. Oguz, D. Driess, M. Toussaint, and A. Menges. Robust task
and motion planning for long-horizon architectural construction planning. arXiv preprint
arXiv:2003.07754, 2020.

[27] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask R-CNN. In ICCV, pages 2980–2988.
IEEE Computer Society, 2017.

[28] R. B. Girshick. Fast R-CNN. In ICCV, pages 1440–1448. IEEE Computer Society, 2015.

[29] S. Ren, K. He, R. B. Girshick, and J. Sun. Faster R-CNN: towards real-time object detection
with region proposal networks. In NIPS, pages 91–99, 2015.

[30] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu. Spatial transformer networks.
In NIPS, pages 2017–2025, 2015.

[31] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
pages 770–778. IEEE Computer Society, 2016.

[32] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
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A Appendix

A.1 Implementation

Our source code can be found in https://github.com/sontung/location-based-generative for the vi-
sual module, and in https://github.com/MarcToussaint/rai for the motion planning with nonlinear
optimization.

A.2 G-network architecture and training

To implement π, we replace the last layer of ResNet-34 [31] with one sigmoid-activated fully-
connected layer FC(512, 2). Suppose the output of π: φ = [a, b], our 2×3 transformation matrix α

is α =

(
1 0 −1.6a
0 1 1.6b

)
. Here 1.6 is our tuned hyper-parameter to make sure that φ covers a good

area of the 128 × 128 image plane. We then pass α to the grid sampler ρ to transform the default
matrix udef to the desired location implied by φ. Tab. 2 details our training hyper-parameters for
training G.

Table 2: Training-related hyper-parameters

Parameter Value
Optimizer Adam [41]
Learning rate 1× 10−3

Weight decay 1× 10−4

Batch size 16

A.3 Ambiguity of Relations

Scene graph representation only takes into account the relative spatial relations, therefore does not
express exact positional information. This problem creates ambiguity in which two different states
may share the same representation (Fig. 8). Although this is not critical, we find a workaround to
disambiguate the scene graph by adding imaginary bases. We then add one more relation for every
base object, and also remove all the left relations as they become redundant. Note that the left/right
relations can still be used, e.g., for such bases, in unstructured environments.

Figure 8: Two different states share the same scene graph representation ({brown, up, pink}, {pink,
up, blue}, {blue, left, green}). New scene graph: left: ({brown, up, pink}, {pink, up, blue}, {blue,
up, stack0}, {green, up, stack1}), right: ({brown, up, pink}, {pink, up, blue}, {blue, up, stack0},
{green, up, stack2}). Here stack0, stack1, and stack2 are three additional imaginary bases.
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Figure 9: IoU on the (5 objects, 3 stacks) training sets of Dpbw (left), and Dsim (right).

A.4 OracularM

We explain here why our symbolic action modelM is oracular. A general action model synthesizes
the new state z̃1 after applying an action a0 to a state z0, i.e., z̃1 =M(z0, a0). Depending on the
representation of z, finding this mapping can be challenging, especially when z are in the image
space [42]. The synthesized z̃1 can be visually correct, but will not be exactly the same as the true
z1. We avoid this problem by utilizing a symbolic scene graph to represent z. Given an action
a0 = (p, q), our rule-based M works as follows: (1) find the top object o1 of stack p, (2) find
the top object o2 of stack q, (3) remove any relations which o1 holds from z0, (4) add the relation
{o1, up, o2} to z0, (5) output the newly modified z0 as z̃1. Hence, if the scene graph representations
of the initial and goal scenes are correctly predicted, such an oracular action model always finds a
feasible plan.

A.5 Additional Analysis on IoU Metric

We discussed in section 6 of the main text that the Intersection-over-Union (IoU) can be an indicator
to measure the confidence of the model for a novel scene. The confidence score can be computed
using f(Zj1), where f is either min or mean function, Zj1 = {IoU(uj2 , ũj2)|1 ≤ j2 ≤ J} with J
is the number of scene objects and 1 ≤ j1 ≤ |Dsim-6obj|. We further analyze to see which f is more
suitable. DenoteA as the set of correctly predicted scene graphA = {f(Zj1)|1 ≤ j1 ≤ |Dsim-6obj|},
andB as the set of incorrectly predicted scene graphB = {f(Zj1)|1 ≤ j1 ≤ |Dsim-6obj|}. The prob-
ability of indicator function f rejecting a correctly predicted scene graph is then |A>max(B)|

|A| . This
probability is 0.047 for fmin and 0.266 for fmean, therefore suggests that fmin is a better indicator
function due to the lower number of potential false positives. Fig. 10 also reflects this as we see a
bigger overlapping area between the sets of correct and incorrect predictions (right column).

A.6 Image Masks and Planning with Goal Images

We present additional figures to further support the main text. Fig. 11 illustrates different mask
images ui and default matrices udef

i . These samples are either rendered by [38] (top row) or our sim-
ulator (bottom row). Fig. 12 shows three additional plans which are different from those presented
in the main text. In these samples, we specify the goals as scene images instead of relations.

B Extensions Towards Applicability in Real-World Settings

B.1 Dealing with random stack locations

The visual module G does not generalize well to novel locations of stacks. We randomly added
a distance ε (0 ≤ ε ≤ εmax) between stacks to augment the stack locations in the testing dataset
Dpbw of 6-object, 3-stack. We then chose randomly 500 test samples of this testing dataset and
test the G which was trained on 5-object, 3-stack. The IoU metric dropped from 0.74 to 0.651,
0.374, and 0.26 for various values of εmax (Tab. 3). This issue can be fixed by first detecting the
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Figure 10: Histogram of occurrences for different IoU values in the set of incorrectly and correctly
predicted scene graph.

Figure 11: Left column: mask images ui. Right column: default matrices udef
i . Top row: samples

from Dpbw. Bottom row: samples from Dsim.

Table 3: Performance comparison when randomly translating stacks horizontally.

εmax
Original Improved

IoU SG accuracy IoU SG accuracy
0.5 0.651 0.912 0.726 0.892
1.0 0.374 0.892 0.724 0.902
2.0 0.26 0.784 0.701 0.902

stack regions by a Connected-component labeling algorithm2 [43]. This algorithm starts at a non-
zero pixel and start to expand to neighboring pixels (if they are also non-zero). The final sets of
these non-zero pixels are called regions. These regions are then translated horizontally by d (where
d ∈ {0,−5, 5,−10, 10,−15, 15}) to check if the new location (which is translated by d from the
original) yields a better prediction (which is quantified by the IoU confidence). Tab. 3 shows that
this technique improves the prediction significantly, hence successfully enhances the ability of G to
novel locations (see Fig. 13 for a further illustration). Also note that the detected regions are exactly
the stacks, therefore the number of stacks m is discovered as well.

2We use a modified version of a Python implementation, which is archived at https://github.com/jacklj/ccl.
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Figure 12: Three sample plans illustrated in each row. Initial images u0 are the left-most, desired
scenes ugoal are the right-most images of each row, respectively. Action (green), which transitions
the current scene to the next, is located at the top-left corner of each image. Action notation follows
sections 4.2 and 5.1.

Figure 13: Illustrations of how to translate stacks in order to generalize better to novel locations.
Top row illustrates the original locations while bottom row illustrates the translated locations of the
left-most stack. From left corner to right corner, we translate the stack by 0, -15 and 15 pixels.
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B.2 Prediction of object properties

Scene graph representation can be complemented if the properties of the objects are informed. For
example, one of these properties is shape. Training a shape predictor, which infers the shape from
the input bounding box, is possible. We generate an additional datasetDpbw-shape of 4-object, 3-stack
to train such a predictor and another similar test dataset with different object colors. The shape
predictor reaches an accuracy of 97% on the test set, which is no surprise since neural networks are
known to excel at this task. Using this shape predictor, we can put heavy penalties on outputting
actions involving fragile, unstable shapes using a heuristics search algorithm [44].

B.3 Possibility to include 3-D relations

Spatial 2-D relationships, such as left, right, up, and down, do not entirely capture the environment.
For example, if there are 2 lines of stacks, it will be difficult to plan using only 2-D relationships.
Therefore, 3-D relationships, such as: in front or behind, have a large impact on the usability of our
method.

We propose an extension to capture the depth relationships (in front, behind) using only the depth
information (e.g., from a depth sensor). We first predict the scene graph considering all the scene
objects which are present in the current view. Due to possible occlusion, we implement a pre-
checking subroutine. During this subroutine, the robot first moves all the visible objects into both
the right-most and left-most stacks, thus is able to observe the occluded objects and predict the
relationships for these objects. To evaluate this technique, we generated a dataset Dpbw-3D of 4
objects and 6 possible stack locations (three stacks are in front of the other three) and tested using
the model which was trained on a dataset of 5 objects and 3 stacks (same as in Sec. 5.2). The test
dataset Dpbw-3D has 2309 scene graphs which includes the depth relationships, 86.67% of which our
model predicted correctly. Therefore, this experiment confirms the possible generalization of our
model to 3-D relationships using an additional depth sensor.
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