
Guided Sequential Manipulation Planning
Using a Hierarchical Policy

Hoai My Van∗, Ozgur S. Oguz†‡, Zhehua Zhou∗ and Marc Toussaint‡§
∗Chair of Automatic Control Eng., TU Munich, †Machine Learning & Robotics Lab, Uni. of Stuttgart

‡Max Planck Institute for Intelligent Systems, §Learning and Intelligent Systems Lab, TU Berlin, Germany

Abstract—We introduce a hierarchical policy structure that
selects high-level actions for effective task and motion planning
(TAMP) in sequential manipulation tasks. For such problems,
scalability of the methods is a major challenge, due to the com-
binatorial complexity of possible discrete decisions. To overcome
this, we propose to learn an upper-level policy that selects the
next manipulation action, and a lower-level policy that decides
on the end-effector and objects to be involved in the action given
the encoded current state. We demonstrate the generalizability of
our approach in various pick-and-place experiments. We further
show that the time and space complexity is significantly reduced
compared to a state-of-the-art TAMP framework especially for
tasks involving many objects.

I. INTRODUCTION

Task and motion planning (TAMP) combines a symbolic
planner, that conducts a logic based search for a sequence
of high-level actions, and a geometric planner, that solves
for the corresponding motion plan [1, 5, 7, 8, 9]. With this
scheme, TAMP methods are able to generalize well over
a large variety of tasks. However, as the dimensionality of
the configuration space or complexity of the tasks to solve
increases, the computation time of finding a feasible solution
grows significantly [3, 4, 6, 10].

Recent work proposes a novel TAMP approach, the Logic-
Geometric Program (LGP) [9], where a sequence of high-
level actions imposes additional constraints on a nonlinear
optimization problem, that can be solved for the optimal
motion plan effectively. However, many possible high-level
plan skeletons may turn out to be infeasible particularly in
complex environments [3]. This results in a substantial amount
of time being spent on attempting to solve the optimization
problem of an infeasible skeleton. In essence, maintaining
generalizability while simultaneously improving the scalability
remains a major challenge.

Recent studies investigates learning based methods to deter-
mine feasibility of selected high-level actions [3, 10]. While
the time complexity of the geometric planner is significantly
improved, discrete action selection is not addressed. A hier-
archical formulation of LGP defines subgoals within a bi-
level optimization problem to improve the action selection
performance [2]. However, acquiring such subgoals requires
task specific abstractions, which might not be trivial for some
manipulation problems. Thus, the complexity of the symbolic
planner and its integration with a motion planner still remains
as the main computational bottleneck especially for long-
horizon problems.

Hierarchical policy

Bound optimization

Preprocessing

g sk

(g, sk)

Instruction
policy µins

Instruction
type ik+1

Select µ` trained
for selected

instruction type

Expert
policy µ`

xkExtract state

Symbols `k+1

High-level
action ak+1

NLP

Legend: Input Output Policy

Fig. 1: Flow of the TAMP framework integrated with the hierarchical policy.

In this work, we propose to learn a hierarchical policy and
integrate it within an LGP framework in order to improve the
scalability of the symbolic planner (Fig. 1). The hierarchical
policy serves as a heuristic for high-level action selection in
order to guide the symbolic planner, such that a given objective
is satisfied within a feasible horizon. The upper-level policy
decides on the instruction type, such as grasping, while the
lower-level policy, specifically trained for the instruction type,
decides on the items involved in this action. We evaluate our
approach in several pick-and-place scenarios. However, the
proposed architecture is readily expandable to new tasks, by
adjusting the hierarchical policy structure accordingly.

Overall, the main contributions of this work are:
• We propose a hierarchical policy that selects discrete

decisions for sequential manipulation tasks effectively.
• We integrate this learned hierarchical policy with a non-

linear program solver to tackle TAMP problems.
• We show that our approach generalizes to scenarios with

unseen goals and outperforms a state-of-the-art TAMP
solver for complex problems.

II. HIERARCHICAL POLICY FOR ACTION SELECTION

We assume a configuration space, X = Rn × SE(3)m,
consisting of an n-dimensional robot and m items. We define
a set of symbols L, that contains the logic representations
of the end-effectors and the items that can be interacted with.
Each symbol has at least one logic type τ ∈ T that determines
the actions the symbol can partake in. The state space S ⊆ X
is the subspace of the configuration space, that contains the
world coordinates of all symbols in L.

We assume a set of symbols L, a set of goals G, a set
of actions A and a data set {{((g, sk), ak+1)n}K(n)−1

k=0 }Nn=1 ,

Input encoding

.

g sk

3D coordinates
symbol 1

3D coordinates
symbol nL

. . .

One-hot:
goal
type

One-hot:
symbols of
logic type 1

One-hot:
symbols of

logic type nig

Output encoding

. . .

ik+1 `k+1

One-hot:
instruction

type

One-hot:
symbols of
logic type 1

One-hot:
symbols of

logic type ni

nL: # of symbols

ni: # of logic types for

instruction type i

nig : # of logic types

for goal type ig

Fig. 2: Input and output encoding.

where ((g, sk), ak+1) ∈ (Gng ×S)×A. Here, g ∈ Gng is the
logic state objective consisting of ng goals, sk ∈ S is the state
at step k and ak+1 ∈ A is the action to execute to switch to
the next step k + 1. The data set consists of N problems and
K(n) samples for each problem n. The aim of this work is
to find a mapping µ : Gng × S → A, such that the standard
cross-entropy loss function L(ak+1, µ(gk, sk)) is minimized.

A. Hierarchical Policy

A high-level action is represented by an instruction type-
symbol tuple, i.e., ak = (ik, `k) ∈ A ⊆ I ×Lni , where i ∈ I
is the instruction type, e.g., grasp, and ` ∈ Lni are the ni
symbols involved in the action.

Thus, the upper-level policy µins : Gng ×S → I selects an
instruction type ik+1 such as grasp or place,

ik+1 = µins(g, sk), (1)

and the lower-level policy µ` : Gng × S → Lni , specifically
trained for the selected instruction type, selects the symbols,

`k+1 = µ`(g, sk). (2)

The policies are implemented as neural networks for classifi-
cation. Each class represents a possible instruction type i ∈ I
for the upper-level policy µins or a symbol ` ∈ L for the lower-
level policy µ` respectively. The lower-level policy µ` further
consists of several sub-policies, each dedicated to determine
the symbol `τ ∈ Lτ ⊆ L of one logic type τ , e.g., the gripper
that is used for a grasp. For the lower-level policy, we use
a classifier chain. Thus, sub-policies make decisions serially
based on previous decisions.

B. Input And Output Encoding

A goal is represented by a goal type-symbol tuple, i.e.,
gj = (ig,j , `g,j) ∈ G ⊆ Igoal × Lnig , where ig ∈ Igoal is
the goal type, e.g., held, and `g ∈ Lnig are the nig symbols
associated to the goal type. Zero-padding is applied to shorter
goal encodings in order to ensure consistent size for each goal.

The input is the tuple (g, sk), and the output is the next
high-level action ak+1 (Fig. 2). The state sk contains the 3D
world coordinates of all nL symbols in the environment. The
instruction and goal type are one-hot encoded. The associated
symbols are one-hot vectors for each logic type.

red

blue

green

robot
pr2R

pr2L

tab1

tab2

(a) Schematic illustration.
(b) Final configuration for the objective

(on blue red) (on red green).

Fig. 3: Pick-and-place setup: Ltable = {red, green, blue, tab1, tab2},
Lgripper = {pr2L, pr2R}, and Lbox = {red, green, blue}.

C. Motion Planning For Sequential Manipulation Tasks

We integrated the hierarchical policy together with a nonlin-
ear program (NLP) to realize a TAMP framework (Fig. 1). We
adapted the NLP solver of [9] and modified its search strategy.
First, the state sk is extracted from the configuration xk. The
encoded objective g and state sk are concatenated to obtain
the input for the hierarchical policy. The instruction policy µins

maps the input to the instruction type ik+1. The corresponding
expert policy µ` maps the input to the symbols `k+1 by using
a classifier chain. The instruction type ik+1 and the symbols
`k+1 are concatenated to obtain the high-level action ak+1.

Given a sequence a1:K = (a1, . . . , aK) ∈ AK , we can
construct an NLP P(a1:K) to solve for a sequence of robot
configurations according to [9]. The NLP can be solved
for different levels of detail, i.e., multiple bounds. During
sequential action search, we use a coarse bound, which only
solves for the key frames of a sequential manipulation task,
i.e., the configuration before and after each action. The next
configuration xk+1 is obtained by solving the NLP (Fig. 1),

xk+1 = Pcoarse(a1:k+1)|k+1. (3)

If a sequence of actions a1:K satisfies the objective, the
corresponding optimal motion plan is solved with a dense
discretization by a detailed bound,

x = P(a1:K). (4)

III. EXPERIMENTS & RESULTS

We evaluated the proposed approach in a pick-and-place
scenario and verified the effectiveness of the hierarchical
policy to find a feasible sequence of high-level actions for
a given objective. We defined T = {gripper,box, table},
A = {(grasp gripper box), (place gripper object table)},
I = {grasp,place}, and G = {(held box), (on box table)}.
Three neural networks were trained. The upper-level policy
µins determines the instruction type ik+1. The lower-level
policies µgrasp and µplace select the symbols `k+1.

A. Generalizability

We evaluated the proposed approach for generalizability
(Fig. 4). The position of the boxes can vary on the tables. We
defined 15 objectives consisting of one goal and 72 objectives
consisting of two goals. The policies were trained for 40
objectives consisting of two goals for 51 initial configurations
and tested for 20 new configurations for all, including the 47
unseen, objectives.

Default Objective Adaptation
All Unseen All Unseen

Shortest solution 91.9% 90.3% 98.5% 98.2%
Feasible solution 8.1% 9.7% 1.5% 1.8%
No solution 0% 0% 0% 0%

Reattempts due to

Infeasible solution 3.2% 2.2% 3.4% 2.5%
Maximum depth 1.1% 1.6% 0% 0%

TABLE I: Generalizability over all and unseen objectives. The results were
averaged over all configurations and objectives. Default refers to the proposed
approach without any modification. A shortest solution contains the minimal
number of high-level actions. Feasible solution is a solution that is not a
shortest one. See Appendix for additional details.

(a) (b) (c) (d)

Fig. 4: Setups for comparison with various colored boxes and a gray tray.

Our proposed approach always found a solution and the
policy is able to generalize over unknown combinations of
goals. The shortest solution was found in a majority of cases,
91.9% for all, and 90.3% for unseen objectives (Table I).
Replanning was required in a few cases (< 5%), indicating
that a solution was usually found at the first attempt. The
performance is further improved by adapting the objective g to
only consist of the nu unsatisfied goals, i.e., gad ∈ Gnu ⊆ Gng .
With this modification, the shortest solution was found in over
98% of cases (Table I-“Objective Adaptation”). Furthermore,
no reattempts due to maximum depth were required.

B. Scalability

We compared our approach to the original LGP formu-
lation [9] with respect to scalability. The policy trained for
the initial setup was used with some modifications due to the
network architecture. If there are more than two goals, only a
subset of unsatisfied goals is selected, i.e., g ∈ G2 ⊆ Gnu . If
there are more than three boxes, only boxes included in g are
selected. If g contains more than three boxes, g is changed to
consist of one goal.

The time and space complexity was evaluated for seven
problems (Table II) in four different setups (Fig. 4). The goal
comprised either to stack boxes, or to place them on the tray
or another table. For Prob. b.1, c.1 and d.1 the boxes do not
have to be stacked. Thus, for the original LGP approach, the
branching factor b was reduced by not classifying the symbols
in Lbox as the logic type table. Additionally, for Prob. b.1
and c.1, tab1 was not classified as the logic type table, as
the boxes were never to be placed on it. Note that b was not
changed for the proposed approach. We compared computation
time and the tree size until the first feasible solution was
found. The number of maximum attempts was four and the
maximum depth was 20. The symbolic planner was stopped
at a maximum tree size of 4 · 105 due to the memory limit.

Prob. Target # of objectives Kmin

a.1 Stack boxes on table 9 4
b.1* Place boxes on tray/tab2 8 6
b.2 Stack boxes on tray 6 6
c.1* Place boxes on tray/tab2 6 8
c.2 Stack boxes on tray 6 8
d.1* Place boxes on tray/other table 6 10
d.2 Stack boxes on tray 6 10

TABLE II: Problems used for comparison of scalability (setups as in Fig. 4).
*: Reduced branching factor used for the original LGP formulation [9]. Kmin

is the minimum number of high-level actions required to solve the problem.

Original work Proposed approach
mean std mean std

Prob. a.1 Time [s] 2.1 0.8 2.7 0.9
Tree size 400.7 127.6 26.1 6.0

Prob. b.1* Time [s] 4.0 1.1 5.0 1.0
Tree size 3096.0 41.4 48.0 0.0

Prob. b.2 Time [s] 8.55 1.0 3.6 0.2
Tree size 43630.3 437.5 47.0 0.0

Prob. c.1* Time [s] 112.3 8.5 12.4 3.2
Tree size 216682.5 1998.3 101.0 38.0

Prob. c.2 Time [s] – – 8.5 3.3
Tree size – – 98.8 35.8

Prob. d.1* Time [s] – – 18.0 5.6
Tree size – – 176.7 59.9

Prob. d.2 Time [s] – – 8.3 1.1
Tree size – – 117.7 0.5

TABLE III: Results for comparison of scalability.

The original work is faster for Kmin = 4 (Table III).
Due to the computational effort of the hierarchical policy and
additional optimization, less nodes can be discovered within
the same time. For Kmin = 6, both approaches perform simi-
larly, with the original work being faster if b is reduced, and
slower if otherwise. For Prob. c.1, the original work requires
significantly more time and larger tree size to find a solution,
even though b is reduced. Starting from Prob. c.2, the original
LGP formulation fails to find a solution as the maximum tree
size is reached. In contrast, the hierarchical policy maintains
a feasible computation time and tree size over all problems.
Note that the computation time for our approach is smaller
for the stacking problems as the optimization problem is less
complex in these cases. Prob. c.2 required more time than
Prob. d.2 due to more reattempts.

IV. CONCLUSION

In this work, we propose a hierarchical policy for high-
level action selection and integrate it in a TAMP framework.
Our approach is able to generalize over unseen objectives.
Furthermore, both the time and the space complexity are
significantly reduced compared to a state-of-the-art TAMP
approach. In future work, the proposed approach has to be
evaluated on different tasks. Furthermore, feasibility is cur-
rently only determined by path optimization after the symbolic
planning is finalized. Thus, an efficient feasibility classifier [3]
can be integrated into our proposed high-level action selection
in order to realize a more effective TAMP solver.

REFERENCES

[1] N. Dantam, Z. Kingston, S. Chaudhuri, and L. Kavraki.
An incremental constraint-based framework for task and
motion planning. The International Journal of Robotics
Research, 03 2018. doi: 10.1177/0278364918761570.

[2] D. Driess, O. S. Oguz, and M. Toussaint. Hierarchical
task and motion planning using logic-geometric pro-
gramming (HLGP). RSS Workshop on Robust TAMP,
2019. URL http://dyalab.mines.edu/2019/rss-workshop/
driess.pdf.

[3] D. Driess, O. S. Oguz, J. S. Ha, and M. Toussaint. Deep
visual heuristics: Learning feasibility of mixed-integer
programs for manipulation planning. In Proc. of the IEEE
Int. Conf. on Robotics and Automation (ICRA), 2020.

[4] V. N. Hartmann, O. S. Oguz, D. Driess, M. Toussaint,
and A. Menges. Robust task and motion planning for
long-horizon architectural construction planning. URL
http://arxiv.org/abs/2003.07754.

[5] L. P. Kaelbling and T. Lozano-Perez. Integrated task and
motion planning in belief space. International Journal of
Robotics Research, 32(9-10), 2013. URL http://lis.csail.
mit.edu/pubs/tlp/IJRRBelFinal.pdf.

[6] B. Kim, L. P. Kaelbling, and T. Lozano-Perez. Learning
to guide task and motion planning using score-space
representation. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 2810–2817,
2017.

[7] F. Lagriffoul, D. Dimitrov, J. Bidot, A. Saffiotti, and
L. Karlsson. Efficiently combining task and motion
planning using geometric constraints. The International
Journal of Robotics Research, 33(14):1726–1747, 2014.
doi: 10.1177/0278364914545811. URL https://doi.org/
10.1177/0278364914545811.

[8] T. Lozano-Perez and L. P. Kaelbling. A constraint-
based method for solving sequential manipulation plan-
ning problems. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2014. URL http:
//lis.csail.mit.edu/pubs/tlpk-iros14.pdf.

[9] M. Toussaint, K. R Allen, K. A Smith, and Josh B
Tenenbaum. Differentiable physics and stable modes for
tool-use and manipulation planning. In Proc. of Robotics:
Science and Systems (R:SS 2018), 2018.

[10] A. Wells, N. Dantam, A. Shrivastava, and L. Kavraki.
Learning feasibility for task and motion planning in
tabletop environments. IEEE Robotics and Automation
Letters, PP:1–1, 01 2019. doi: 10.1109/LRA.2019.
2894861.

APPENDIX

The experiments were conducted on Ubuntu 18.04 on a
16GB RAM machine. The parameters used for training are
displayed in Table IV. The upper-level policy as well as each
sub-policy of the lower-level policies are represented by a
feed-forward neural network with nl hidden layers with nh
nodes, a dropout rate of r and a L2 regularization of w.
The policies were trained using early stopping and the Adam
optimizer. For each objective, all feasible sequences of high-
level actions were used for training. Each sequence provided
several samples. Each sample consisted of an input (g, sk)
and the consecutive high-level action ak+1. Samples with
objectives with two goals were duplicated for each sequence of
goals. Objectives with one goal are implemented as the same
goal twice. From all training samples, 20% were randomly
selected as validation data.

The training and testing sets for the experiments in sub-
section III-A are detailed in Table V. A reattempt occured
up to 3 times when either a feasible motion path could not
be solved by the NLP with the action sequence provided by
the hierarchical policy, or the predefined maximum depth of
the search tree was reached. Here, a maximum depth of 8 was
defined. For the experiments in subsection III-B, each problem
was evaluated for one initial configuration and for different
objectives, e.g., different orders of a stack. The number of
tested objectives is displayed in Table II-“# of objectives”.

nl nh r w Epochs Batch
size

Learning
rate

µins 2 64 0.3
1e−4

200
128 1e−3µgrasp 3 80 0.3 250

µplace 3 80 0.1 250

TABLE IV: Neural network and training parameters.

Initial
configurations

Objectives:
one goal

Objectives:
two goals

Training Set 52 0/15 40/72
Testing Test 20 (new) 15/15 72/72

TABLE V: Training and testing set for generalizability.

http://dyalab.mines.edu/2019/rss-workshop/driess.pdf
http://dyalab.mines.edu/2019/rss-workshop/driess.pdf
http://arxiv.org/abs/2003.07754
http://lis.csail.mit.edu/pubs/tlp/IJRRBelFinal.pdf
http://lis.csail.mit.edu/pubs/tlp/IJRRBelFinal.pdf
https://doi.org/10.1177/0278364914545811
https://doi.org/10.1177/0278364914545811
http://lis.csail.mit.edu/pubs/tlpk-iros14.pdf
http://lis.csail.mit.edu/pubs/tlpk-iros14.pdf

	Introduction
	Hierarchical Policy For Action Selection
	Hierarchical Policy
	Input And Output Encoding
	Motion Planning For Sequential Manipulation Tasks

	Experiments & Results
	Generalizability
	Scalability

	Conclusion

