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Abstract— Long-horizon manipulation tasks require joint
reasoning over a sequence of discrete actions and their asso-
ciated continuous control parameters. While Task and Motion
Planning (TAMP) approaches are capable of generating motion
plans that account for this joint reasoning, they usually assume
full knowledge about the environment (e.g. in terms of shapes,
poses of objects) and often require computation times not
suitable for real-time control.

To overcome this, we propose a learning framework where a
high-level reasoning network predicts, based on an image of the
scene, a sequence of discrete actions and the parameter values
of their associated low-level controllers. These controllers are
parameterized in terms of a learned energy function, leading
to time-invariant controllers for each phase. We train the
whole framework end-to-end using a dataset of TAMP solutions
computed using Logic Geometric Programming. A key feature
is that the reasoning network determines the parameters of
the controllers jointly, such that the overall task can be solved.
Despite having no explicit representation of the geometry nor
pose of the objects in the scene, our network is still able to
accomplish geometrically precise manipulation tasks, including
handovers and an accurate pointing task where the parameters
of early actions are tightly coupled with those of later actions.
Video: https://youtu.be/AcPWRTkr3_g

I. INTRODUCTION

Long-horizon sequential manipulation problems are chal-
lenging since they require decisions both over discrete and
high-dimensional continuous aspects of the problem. Contact
activities at different phases of the motion often imply a
combinatorial problem and the non-smoothness around con-
tacts requires special treatment for motion planning methods
to succeed. Given a sequence of discrete actions, a motion
planner has to find geometric paths which are consistent not
only with one discrete action, but also with all other actions
and the goal, e.g., an object or a tool might have to be grasped
in a specific way in order for later actions to be realizable.

Task and Motion Planning (TAMP) has developed methods
to deal with these issues by combining reasoning on a sym-
bolic level with continuous motion planning, allowing them
to compute motion plans for long-horizon problems [1]–[4].
However, TAMP usually assumes full knowledge about the
environment, e.g. in terms of shapes and poses of all objects,
which is difficult to obtain from perception. At the same
time, even if the environment was fully observed, due to the
high combinatorial complexity of discrete decisions and the
difficulty of motion planning itself, solving TAMP problems
often demands computation times which are not suitable
for real-time control. In [5], the combinatorial complexity
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Fig. 1. Typical scene: The goal is to touch the red goal location, which
is out of reach of the robots. Therefore, the arms have to utilize the green
stick directly (brown path) or coordinate a handover motion (blue path).

of the discrete decisions has been addressed by learning to
predict feasible action sequences for a TAMP problem from
an image of the scene, which greatly reduces the number of
motion planning problems that have to be solved. To compute
the actual motions via trajectory optimization, the shapes and
poses of the objects are still necessary.

The present work fully removes the requirement of pose
and shape estimation and realizes a vision-based version
of TAMP including control. In order to achieve this, we
propose a hierarchical framework that consists of a high-
level reasoning/planning module and low-level controllers,
both of which are learned jointly. Based on an image of the
initial scene, the high-level reasoning module predicts not
only the feasibility of a discrete action sequence, but also
a sequence of vectors that represent both the actions and
their associated control parameters which in turn define the
closed-loop behavior of the low-level controllers. The action
sequence itself and also the feedback motions are computed
from observations only. Therefore, our work can be seen as
an attempt to bridge perception, TAMP and control.

To generate the training data for the whole network
architecture, we utilize a TAMP solver, Logic Geometric
Programming (LGP) [6], to generate expert trajectories. The
dataset of optimal control transitions is created through
model predictive control (MPC) built locally around the
LGP solution trajectories. Compared to a standard behavior
cloning objective, we additionally exploit the information
encoded in the Hessian of the LGP/MPC solution to realize
a more informative training objective function.

The low-level controllers are derived from an energy-based
model of learned potential functions. Since our reasoning
network retains the property of a TAMP solver to provide
multiple solutions to the problem (if they exist), connected
with the value function from LGP, this energy model allows



prioritization of the multiple solutions.

II. RELATED WORK

A. Task and Motion Planning
Many TAMP approaches combine search on a logical

level with sampling based motion planning [1], [7]–[10],
nonlinear trajectory optimization [4], [11]–[13] or constraint
satisfaction methods [14], [15]. Commonly, the interaction
between the two domains is realized by the logic solver
proposing discrete action sequences for which the motion
planner either finds a feasible motion or returns infeasibil-
ity. Due to the combinatorics of possible discrete actions
and geometric constraints, many motion planning problems
have to be solved to find a feasible solution. Therefore,
solving TAMP often demands computation times beyond the
requirements for turning such plans into real-time, reactive
controllers. Overcoming this is an active field of research.
For example, in [12] TAMP is defined in object-centric
coordinates, which enables to derive controller that can
react to (small) perturbations. However, their approach relies
on state estimation during execution. Solving mixed-integer
programs for control of hybrid systems suffers from similar
combinatorial issues [16], [17], which requires, e.g., warm-
starting [18] to make it suitable for control. Our work
utilizes Logic Geometric Programming (LGP) [11] as an
optimization-based approach for TAMP to generate expert
solutions for training our framework. While there have been
advances in deriving controllers from LGP solutions [19],
they still rely on full knowledge of the environment in
terms of shapes and poses of objects and one first has to
find a feasible action sequence and solve its corresponding
trajectory optimization problem. Our approach addresses
these three issues. Given an action sequence, our network
directly predicts its feasibility, without having to solve a
motion planning problem. Further, it outputs the sequence of
vectors that parameterize a low-level feedback policy. Since
these low-level policies are trained end-to-end to solve the
TAMP problems only from such vectors, these vectors can be
considered as a latent space encoding, not only of the state
of the environment, but also of the solution of the TAMP
problem, allowing the low-level policy to be greedy. Finally,
all this is done based on an initial image of the scene.

B. Learning for Long-Horizon Tasks/TAMP
Learning planning behaviors is of great interest [20]–[25].

In [26]–[33] action-conditioned forward models, e.g. in the
image space, are learned for planning. It is, as mentioned
in [34]–[37], however, difficult to scale up image-based
forward prediction methods to solve long-horizon tasks.
Several works consider learning a heuristic for the symbolic
level to speed up finding a solution to a TAMP problem
[2], [5], [38]–[44]. Most of these approaches, however,
rely on full knowledge of the environment for generating
the motions themselves. Addressing planning and low-level
control jointly for long-horizon tasks is usually realized in a
hierarchical framework consisting of a high-level planning
module and low-level controllers [45]–[50]. Most related
to our approach is [51], where they propose a learning
framework that consists of a sensor-based symbolic state

observer and a low-level control policy. A symbolic planner
(based on [52]) takes the predicted symbolic states from
the observer and produces a discrete plan for the low-level
policy. Also in [53], long-horizon tasks are assumed to be
decomposed into subtasks represented by action symbols and
they propose a framework to predict those symbols from
images. However, the tasks most of these works consider do
not require joint reasoning over continuous parameters. The
problems we address cannot be represented only by such
symbols so the geometric aspects of the problem should
be considered together. In [54], latent representations of
skills are learned in a self-supervised manner, which act
as high-level commands. Similarly in [55], [56], high-level
modules are trained from play data to predict sub-goals,
which guide low-level policies. Compared to these, our
framework is trained using more structured, goal-directed
data from LGP. Lastly in [57], an affordance model for
skills is trained through trial-and-error, which, with a learned
transition model, allows for long-horizon reasoning. While
they assume to have a policy for parameterized skills, our
method concurrently learns control parameters and a policy.

C. Learning from Optimal Control/Trajectory Optimization
There have been several works that leverage optimal

control and trajectory optimization to train a neural network
control policy. In [58], optimization problems w.r.t. trajectory
and policy parameters are addressed together using the
Alternating Direction Method of Multipliers (ADMM) and
iterative LQG. Guided policy search [59] also formulates
policy learning as a combined optimization problem and
solves it using ADMM. While these approaches have shown
the great opportunity of utilizing optimal control methods
as a means of data generation, they only address single-
phase smooth problems. When it comes to long-horizon
tasks/TAMP, where the optimal behavior often has multiple
phases and cannot be represented solely by the continuous
state, it becomes unclear how to encode discrete aspects and
the reasoning process into the policy network.

III. BACKGROUND OF LOGIC GEOMETRIC
PROGRAMMING FOR TAMP

In this section, we describe LGP [6] in a discrete time
formulation as the TAMP framework for this work. For
a scene S, in LGP, a first-order logic planner proposes
a sequence of discrete actions a1:K , a so-called skeleton,
which, via its uniquely implied symbolic state sequence
s1:K , imposes costs and constraints on a (smooth) nonlinear
trajectory optimization problem over the time discretized
path x. Solving an LGP for a goal g

P (g, S) = min
K∈N

x1:KT ,xt∈X
a1:K , s1:K

KT∑
t=1

f
(
xt, xt−1, sk(t), S

)
(1a)

s.t.
∀t∈1,...,KT : heq

(
xt, xt−1, sk(t), S

)
= 0 (1b)

∀t∈1,...,KT : hineq
(
xt, xt−1, sk(t), S

)
≤ 0 (1c)

∀k=1,...,K : ak ∈ A(sk−1, S) (1d)
∀k=1,...,K : sk = succ(sk−1, ak) (1e)

x0 = x̃0(S), s0 = s̃0(S), sK ∈ Sgoal(g) (1f)



means to find an action sequence for which the resulting
nonlinear program over the path x1:KT is feasible. The path
x in the configuration space X ⊂ Q × SE(3)m, Q ⊂ Rn
of all objects and robots (Q is the joint space of the robot)
consists of K ∈ N phases, each discretized with T steps. The
functions f, heq, hineq and hence the costs/constraints in phase
k of the motion (k(t) = bt/T c) are parameterized by the
symbolic state sk ∈ S. The transitions between sk−1 and sk
are determined by a first-order logic language as a function
of the previous state sk−1 and the discrete action ak. These
actions ak ∈ A(sk−1, S) are grounded action operators.

IV. REASONING AND CONTROL FROM VISUAL INPUT

The overall goal of this work is to find a controller that
solves a sequential manipulation task from sensor obser-
vations. To make this tractable, we follow the assumption
of LGP that such tasks can be divided into K phases
that correspond to high-level actions. Instead of trying to
learn one monolithic controller, we want to predict, based
on an observation of the scene (in this case an image), a
sequence of discrete actions a1:K = (a1, . . . , aK) and their
corresponding controllers πk that stabilize each phase. K is
part of the decision problem. However, a crucial property
of such manipulation problems is that the discrete actions
typically do not fully determine the exact motions of each
phase, such that in many cases the behavior of the controllers,
e.g. in terms of their convergence points and the path towards
them, in each phase has to be coordinated globally to make
them consistent with earlier and future actions. An action,
e.g., might specify that an object has to be grasped, but there
are still (infinitely) many ways of grasping, hence the actual
grasp has to be coordinated with the other actions.

Therefore, we introduce a hierarchical framework, visual-
ized in Fig. 2, consisting of a high-level reasoning network
that, given a sensor observation I of the initial scene (in
our case an image), not only decides the feasibility of a
discrete action sequence a1:K , but especially also predicts
a sequence of vector representations ĉ1:K , ĉk ∈ Rnc that
parameterize the low-level controllers π(·, ĉk) of each phase
k. These controllers are time-invariant feedback policies. All
information about the scene and the goal (geometry etc.)
that is necessary for the current controller is compressed
into ĉk, such that the controller is not explicitly a function
of the goal or other actions. This way, ĉ1:K can be seen
as a (latent) representation of the scene for the chosen
action sequence. Once the controller of the current phase
converges, the system transitions to the next phase where the
controller is parameterized by ĉk+1. In this sense, the high-
level reasoning network can be understood as a planning
network that coordinates the motions globally based on an
initial observation of the scene. In short, our framework
transfers both the logic reasoning and continuous trajectory
optimization computations of LGP into a neural network
architecture that only relies on sensor data and provides time-
invariant controllers for each phase.

A. High-Level Geometric Reasoning Network

Given an initial sensor observation I (e.g. a depth image)
of the scene and a candidate action sequence a1:K , ak ∈ A,
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Fig. 2. Network architecture consisting of high-level reasoning network in
blue, adaptation network in orange and low-level controllers in green. The
reasoning network is queried only once on the initial image of the scene
to generate the sequence of vector representations ĉ1:K . During execution,
the controllers of each phase are time-invariant feedback policies. When
they converge, the system transitions to the next phase k + 1, where an
observation of the current q is taken into account in C, transforming the
initially predicted ĉk+1 by Ω into ck+1 for the next controller.

the high-level reasoning network Ω

Ω : (a1:K , I) 7→ (ĉ1:K , z, v̄1:K) (2)

predicts a sequence of vector representations ĉ1:K , ĉk ∈
Rnc that will parameterize the low-level controllers (see
Sec. IV-B.1), an exponentiated cost prediction of that action
sequence (z = exp(−V1) ∈ [0, 1] with V1 cost-to-go)
as well as a sequence of cost bias terms v̄1:K , v̄k ∈ R
(the latter will be explained in Sec. IV-B.2). With the
cost prediction z, we can find the set of action sequences
F = {a1:K ∈ T (S, g) : z(a1:K) > β} which are classified
as feasible by Ω for the threshold β > 0 (for an infeasible
sequence we have V1 =∞ and therefore z = exp(−∞) = 0,
hence infeasibility prediction for z < β). T (S, g) is the set
of all action sequences that fulfill the constraints (1d)-(1f).

The actions a in LGP and in our framework are grounded
action operators, which means that they simultaneously rep-
resent the action operator symbol and the objects in the scene
they are referring to. The question arises on how to encode a
as input to Ω. Following our previous work [5], we split an
action into a = (ā, O) with ā ∈ A being the discrete action
operator symbol and O ∈ P(O(S)) the objects a operates
on. For example, ā could indicate the abstract action operator
grasp, whereas O would indicate which actual object in the
scene should be grasped. This separation allows us to directly
encode ā in a one-hot encoding (called AE in Fig. 2). Further,
we can map the objects O to a so-called action-object-image
via I : O 7→ R(1+nO)×w×h, which is the stacking of a
depth image of the complete scene with masks of the objects
O that are relevant for the action. Therefore, the reasoning
network operates on the those action-object-images that are
extracted from the initial depth observation in terms of object
masks and the depth channel. As has been argued in [5],
an image representation has the advantage that it has a
fixed dimension, independent from the number of objects
in the scene. Extracting masks is, although still challenging,
considered to be more tractable from raw sensory input than
pose and complete shape estimation [60]. The action-object
images are encoded via a convolutional neural network (CNN
in Fig. 2). Based on the sequence of action operator symbols



ā1:K and action-object images (I(Ok))k=1:K , we make the
concrete input to the reasoning network more explicit by
(ĉ1:K , z, v̄1:K) = Ω

(
ā1:K , (I(Ok))k=1:K

)
. We chose Ω as

a bidirectional recurrent network to enable the network to
reason over the whole sequence ĉ1:K jointly.

B. Learning Energy Functions as Low-Level Policy Network

1) Control via Learned Energy Functions: The idea be-
hind our control framework is a class of policies π, pa-
rameterized by the vector c, which map the current joint
configuration q ∈ Q to joint velocities ∆q in discrete time,
qnext = q + π(q, c). This vector c defines not only the
attractor manifold itself where the controller should be in
equilibrium, but also the vector field, i.e. the path towards it.
This is important for robot manipulation where the controller
within one phase of the motion should take care of collision
avoidance while converging to an equilibrium state.

Instead of a direct policy that maps the current joint config-
uration of the robot to joint velocities, our framework learns a
neural network-based energy function Ec(q) = 1

2‖ψ(q, c)‖2
to shape the attractor behavior, where ψ : Q× Rnc → RnE

defines an abstract feature. With this, the control policy is
defined through the energy minimization problem

qnext = argmin
q̃∈Rn

1

2
||q̃ − q||2R +

1

2
||ψ(q̃, c)||2, (3)

where the control cost matrix R, which comes from (1a),
trades off control cost with minimizing the energy. By
linearization, the solution of (3) can be approximated as

π(q, c) ≈ argmin
∆q∈Rn

(
1

2
∆qTR∆q +

1

2
||ψ(q, c) + J∆q||2

)
= −(R+ JTJ)−1JTψ(q, c), (4)

where J = ∂ψ
∂q (q, c) is the Jacobian of ψ w.r.t. q at q, c.1

Furthermore, the energy function can utilize priors in terms
of 1

2 ||ψ(φ(q), c)||2 where φ is a task space, e.g. forward
kinematics. In our case, we define φ(q) to be positions of
three points on the end-effectors.2

2) Skeleton Selection via Value Interpretation of Energy
Function: Another view on the energy-based policy (3) is
the Bellman equation, where the energy function acts as a
value function encoding the optimal cost-to-go. Following
this interpretation, we train the energy network also to
resemble the value function (Sec. V-B.3), with which the
cost-to-go of an action sequence a1:K is predicted as

Ṽa1:K (q, k) ≈ Eck(a1:K)(q) + v̄k(a1:K), (5)

where the robot state independent bias term v̄1:K is one
output of the Ω network. By evaluating the feasible action
sequences at the current configuration (which could have

1Since the neural network Jacobians are included in the computation
graph, the network should be of class C2. We use the soft-plus activation
for this network instead of commonly used ReLUs which would not work.

2π can also be interpreted as Riemannian motion policies [61] or
operational space control, where the operational space is the learned ψ,
with a pull-back metric JT J , such that ė = −e in that space and q̇ = 0
(with metric R) in the joint space describe the closed-loop optimal behavior.

been perturbed by disturbance), our framework chooses the
one with the minimum Ṽ to execute in phase k as

∆q = π(q, ck(a∗1:K)), a∗1:K = argmin
a1:K∈F

Ṽa1:K (q, k), (6)

which means that the robot is capable of deciding the optimal
skeleton to follow, i.e. whether to stay at the currently
executed one or switch to another.

C. Control Parameter Adaptation Network

The reasoning network Ω predicts the sequence of control
parameters ĉ1:K from an initial observation of the scene.
Due to disturbance or other imperfections during execution,
however, a reactive controller could for example have chosen
a different grasping location than anticipated in the plan
(because that was optimal for the perturbed state). This
implies that the behavior of the next phase should be
adapted accordingly, meaning that ĉ predicted with the initial
observation only cannot solely define the motion in the next
phase. To make the controller Markovian to the past phases,
we adjust the parameter during execution by a recurrent filter

ck = C(ĉk, ĉk−1, . . . , ĉ1, pk, pk−1, . . . , p1) (7)

that transforms the predicted ĉk into the filtered ck ∈ Rnc

(which is then the actual input to π) by taking an observation
pk at the switching time, i.e. when the controller has con-
verged, into account. In our case, pk = φ(qk) is used, i.e.
the position features of the end-effectors at switching time.

V. TRAINING

A. Data Generation via MPC

A solution of a TAMP algorithm is usually a (collision
free) trajectory from the initial to the goal configurations
of each phase. To train a controller, we need to generate
control transitions around the trajectory for perturbed states.
To achieve this, we build a model predictive controller
(MPC) from the LGP solution. This controller is then capable
of generating (approximate) optimal transitions around the
solution trajectory by solving one-step nonlinear programs

x∗∗t = argmin
xt∈X

[
ft(xt−1:t) + Vt+1(xt)

]
(8)

s.t. heq,t(xt−1:t) = 0, hineq,t(xt−1:t) ≤ 0,

with VKT+1 , 0, where ft, heq,t, and hineq,t are the cost,
equality and inequality constraints at the current time step
t of the LGP (1) for a fixed skeleton, respectively, i.e.
heq,t(xt−1:t) = heq(xt−1, xt, sk(t), S) (ft, hineq,t analogue).
The quadratic approximation of the cost-to-go function Vt

Vt= min
xt:KT

KT∑
τ=t

fτ (xτ−1:τ ) s.t. ∀KTτ=t :
heq,τ (xτ−1:τ )=0
hineq,τ (xτ−1:τ )≤0

(9)

can be computed analytically backwards in time via k-
order dynamic programming (KODP) [19] using the 1st-
and 2nd-order Taylor expansions of the cost and constraints
around the optimal solution trajectory x∗1:KT from (1) as
Vt+1(xt) ≈ 1

2δx
T
t ∇2Vt+1δxt+v

T
t+1δxt+ v̄t+1, ft(xt−1:t) ≈

1
2δx

T
t−1:t∇2f∗t δxt−1:t + (∇f∗t )T δxt−1:t + f∗t , ht(xt−1:t) ≈

(∇h∗t )T δxt−1:t, where δx· = x· − x∗· , f
∗
t = ft(x

∗
t−1:t)



etc., and ht denotes the equality constraints and activated
inequality constraints. The detailed derivation of KODP can
be found in our previous work [19]. The controller (8)
with the approximate cost-to-go Vt is time-varying and only
valid locally around the linearization point. Note that this
is not a linear controller since we use the nonlinear ft,
heq,t, hineq,t in (8). To obtain the optimal transitions from
various configurations but not too far from the solution, we
sample trajectories with MPC as follows: starting from the
initial configuration x0 and t = 1, we first inject Gaussian
disturbance into the current configuration, then we solve the
MPC optimization (8) to compute ∆x∗∗t = x∗∗t −xt−1, save
the data and transition to the next time step. Applying this
procedure to many different scenes S leads to the dataset

D =
{(
S, q0:KT−1,∆q

∗∗
1:KT , (ā, I)1:K , v

∗∗
2:KT+1, z

∗,

∇2Ṽ ∗∗2:KT+1,∇2f̃∗∗1:KT ,∇h̃∗∗1:KT

)(i)}N
i=1

where (ā, I)1:K is the sequence of discrete actions and their
corresponding action-object images, q0:KT−1 the robot joint
configuration, ∆q∗∗1:KT their optimal control transition from
MPC (subspace of ∆x corresponding to the robot joints),
v∗∗2:KT+1 the cost-to-go at the next time step along the
trajectory and z∗ = exp(−V ∗1 ) ∈ [0, 1] the exponentiated
cost of the skeleton in the noiseless case with z∗ = 0
(V ∗1 =∞) denoting infeasibility of this action sequence (in
which case all other quantities are not computed). The last
three quantities are submatrices corresponding to q of the
Hessians of V , f and the Jacobian of h (all w.r.t. xt), which
will be used to define the loss function for training.

B. Loss Function
The whole architecture of the reasoning network Ω, the

adaptation network C, and the energy mapping network ψ
are trained end-to-end. For each trajectory i in the dataset
from MPC, we have the loss L(i) = L∆q + wzLz + wvLv .

1) ∆q-Loss: The controllers should learn to replicate the
optimal behavior of the MPC transitions. The most natural
and widely used loss function for behavior cloning is the
squared Euclidean distance ‖π(q, c) − ∆q∗∗‖22 between the
optimal MPC transitions and the prediction of the neural
controller. However, the output of the MPC optimization
contains more information than just its solution (the optimal
transition). Roughly speaking, we want to optimize the neural
network weights θ of the controller to learn transitions
that minimize the local value functions (9), just like what
MPC does w.r.t. the LGP solution (8). Similar to [62], we
investigate the augmented Lagrangian of the MPC problem
(8) with Levenberg-Marquardt regularization

L(xt) = f∗∗t + V ∗∗t+1 + λTh∗∗t + η‖h∗∗t ‖2 + γ‖x∗∗t − xt‖2

to realize this kind of objective and take the constraints into
account. Linearization at x∗∗t (where the KKT conditions are
fulfilled), ignoring constants and only considering the q part
of x gives L(qt) ≈ δqTt Htδqt with Ht = ∇2f̃∗∗t +∇2Ṽ ∗∗t+1 +

η∇h̃∗∗t
(
∇h̃∗∗t

)T
+ γI where δqt = qt − q∗∗t = ∆qt −∆q∗∗t

is the deviation from the optimal transition, with which we
define the ∆q-loss as L∆q =

∑KT
t=1 ‖∆qt −∆q∗∗t ‖

2
Ht
. The

role of ∇h̃∗∗t
(
∇h̃∗∗t

)T
in Ht is to enforce the next state to

satisfy the constraint while the other terms ∇2f̃∗∗t +∇2Ṽ ∗∗t+1

encode the information about which direction is more rele-
vant for minimizing the cost-to-go. For stable training, we
scale the Hessians with the parameters η and γ by their
largest eigenvalues along the trajectory for each data sample.
If an action sequence is infeasible, we set L∆q = 0.

2) Skeleton prediction loss: To enable Ω to detect the
(in)feasibility of an action sequence, we train its z output
with Lz = (z − z∗)2 to predict the exponentiated cost.

3) Value function loss: The behavior cloning objec-
tive trains the energy function such that its natural gra-
dient reproduces the target transition. In addition, we
train also the value of the energy function with Lv =∑KT
t=1

(
v̄k(t−1)+1 + Ec(qt−1 + ∆q∗∗t )− v∗∗t+1

)2
, where the

joint state independent bias term v̄k(t−1)+1 is predicted by
the reasoning network Ω.

VI. EXPERIMENTS

A. Scene and Task
We consider the task of touching a goal location (one can

think of pushing a button). As can be seen in Fig. 1, the goal
location, indicated in red, can be out of reach for the robot
to touch it directly. Therefore, the robot arms have to utilize
the stick (green) to touch the goal. However, the stick might
also only be graspable by one of the two arms, which means
that a handover motion would be necessary. This problem is
challenging since the way each individual action has to be
executed is tightly coupled with other actions and the goal.
For example, the stick has to be grasped at a certain location
in order to touch the goal with it. If a handover is involved,
then the first grasp often has to be completely different. All
this depends on the geometry of the scene.

The LGP problem for data generation contains 6 actions
(touch left arm, touch right arm, grasp left arm, grasp right
arm, touch stick end 1, touch stick end 2). This leads to
10 different action sequences, 2 of length 1, 4 of length 2,
and 4 of length 3. We generate 10,000 scenes by uniformly
sampling the goal location, the position, orientation, and
length of the stick, leading to a 6-dimensional parameter
space for the scenes. Gaussian noise with standard deviation
0.03 is added to the robot joints during control generation.
For evaluation, we sample both a validation and test dataset
of 1,000 scenes each with the same sampling procedure, but
a different random seed. While the data is generated in a
kinematic only environment, for evaluating the network, we
use the Bullet physics simulator. All results are obtained by
training the network three times for 100 epochs. Then, based
on the validation dataset, the best epoch of each training
is chosen. The numbers in the results are then obtained by
evaluating these best networks on the separate test dataset.

B. Results
1) Performance on all action sequences: In the first row

of Tab. II, we evaluate the success rate of our framework
on a hypothetical execution where all action sequences of
a scene can be tested for success. For the test scenes, for
1048 skeletons of length 1, 1807 of length 2, and 1824
of length 3 a feasible solution was found by LGP (there



TABLE I: ACCURACY OF SKELETON FEASIBILITY PREDICTION [%]
length K of skeleton total1 2 3

true feasible rate 98.8± 0.3 92.9± 0.6 94.1± 0.4 94.7± 0.3
true infeasible rate 96.4± 0.2 84.8± 0.5 87.1± 0.4 87.8± 0.3

TABLE II: ABLATION STUDY: SUCCESS RATES [%]
length K of skeleton total

1 2 3

no
distur-
bance

all 99.9± 0.1 90.5± 0.5 90.3± 0.5 92.5± 0.3
MSE loss 99.7± 0.2 90.3± 0.6 89.8± 0.7 92.2± 0.5
no adaptation 99.9± 0.1 90.3± 0.7 87.3± 0.8 91.3± 0.3
no recurrent Ω 99.3± 0.4 40.7± 8.8 15.9± 6.6 44.1± 5.6

with
distur-
bance

all 99.9± 0.1 88.7± 0.9 84.9± 1.6 89.7± 1.0
MSE loss 99.7± 0.3 87.3± 1.6 81.8± 1.0 87.9± 0.4
no adaptation 99.9± 0.1 87.5± 1.0 81.3± 0.6 87.8± 0.3
no recurrent Ω 99.4± 0.3 34.6± 7.9 10.9± 4.9 39.8± 4.8

are 10 theoretical skeletons per scene). Among those, our
proposed network was successful 99.9% for skeletons of
lengths 1, 90.5% for length 2, and 90.3% for length 3 without
disturbance, leading to 92.5% in total. With disturbance
(Gaussian noise with standard deviation of 0.03 at each time
step), the rates are 99.9%, 88.7% and 84.9%, respectively
(89.7% in total). We define success if all actions have been
completed and the final distance of the robot or the stick to
the goal is less than 10 cm. The mean distance to the goal
was 1.6± 2.1 cm (1.9± 2.3 cm with disturbance), which is
very precise given how sensitive the position of the end of a
long stick is to small errors in the robot joint configuration.

2) Accuracy of action sequence prioritization: A key
feature of our approach is that the network predicts if an
action sequence is feasible and if yes, its expected cost. Tab. I
shows the accuracy for using the prediction as a feasibility
classifier. True (in)feasible rate means the percentage of
(in)feasible action sequences as found by LGP in the test
data which were correctly classified as (in)feasible by the
network. In 97.0 ± 0.4% of all feasible scenes in the test
data, the action sequence ranked highest by the network was
actually feasible. Additionally, in 91.8± 0.4% of the cases,
this highest-ranked sequence was indeed the one with the
lowest cost as found by LGP. If our framework was not able
to distinguish between feasible and infeasible skeletons, a
random selection would lead to a success rate of 43.7±0.8%.

3) Performance on scenes: Evaluating the performance on
a scene level, i.e. with the controller (6), and counting how
often this leads to success, the success rate is 94.2 ± 0.2%
(93.0 ± 0.1% with disturbance). If we allow the method to
restart the execution when it failed by going back to the
initial robot configuration up to three times, the success rate
increases to 95.5± 0.6% (95.4± 0.6% with disturbance).

4) Switching Behavior: To demonstrate the switching ca-
pability of our framework, we consider the scene in Fig. 1. In
this scene, four out of ten skeletons (see Fig. 3) are classified
as feasible, and graspR-touchS2, which corresponds to
the upper row of Fig. 1, is predicted to have the lowest
cost-to-go. We inject artificial disturbances to obstruct this
skeleton to be executed: the right arm is frozen and the left
arm is pulled to the stick for the first time steps (grey area in
Fig. 3). As shown in Fig. 3, while the robot is being hindered,
the cost-to-go of each skeleton increases differently, making
graspL-graspR-touchS2 optimal afterwards, and our
network executes it as shown in the lower row of Fig. 1.
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Fig. 3. Predicted cost-to-go Ṽ of (initially) feasible action sequences over
continuous time t, based on which the controller chooses a discrete action
sequence to execute; transitions to next actions are at t = 2s and t = 3.7s.

C. Ablation Study
Since our framework consists of many parts, in this section

we investigate the influence of each part on the performance.
1) Standard behavior cloning loss: In Sec. V-B we intro-

duced a more informative loss function. As seen in Tab. II,
the performance with the informative loss function leads to
a slightly higher success rate on all (feasible) skeletons than
with the standard behavior cloning loss (MSE loss). If there
is disturbance, the difference is more significant.

2) Without adaptation: In Sec. IV-C a network that adapts
the control parameter to observations at phase transition
times was introduced. If we remove this part and directly
use the predicted parameter from Ω, i.e. ck = ĉk, one
can see in Tab. II that especially for sequence length 3 the
performance without adaptation drops from 84.9% to 81.3%
(with disturbance). This can be explained by the fact that
the longer the sequence the more imperfections/disturbances
could accumulate and hence more adaptation is necessary.

3) No recurrent reasoning network: To support our claim
that sequential manipulation tasks require joint reasoning
over the sequence of actions and their parameters, we replace
the bidirectional recurrent network for Ω by a feed-forward
one. This way, the network cannot coordinate the parameters
in a globally consistent way. As seen in Tab. II, with an
overall success rate of only 39.8% on all skeletons (with
disturbance), joint reasoning is very crucial for this task,
especially for sequence length 3 (success rate of only 10.9%).
For sequence length 1, i.e. direct touch, it has high success
rate, which is expected since there are no other actions such
that coordination between them would be necessary. Since
the image of the scene contains both the location of the stick
and the goal, without recurrent reasoning, the network can
have some success (34.6%) for sequence length 2.

VII. CONCLUSION

In this work, we have presented a framework that offers
the advantages of TAMP (joint reasoning, multiple solutions)
for a sequential manipulation problem while relying only
on sensor information and which provides controllers. One
of the main arguments and what we have also shown
empirically is that sequential manipulation tasks require joint
reasoning over action parameters. While this is true for many
tasks, there are also many long-horizon scenarios where
subtasks are mostly independent. This implies that (learning)
algorithms should be able to decide which parts need to be
reasoned about jointly and which can be handled separately
for efficient reasoning [63]. A limitation of this work is that
the initial image has to contain all information required for
planning the action sequence/continuous parameters.
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