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Abstract

In this paper, we propose deep visual reasoning, which is a convolutional recurrent neural network that predicts discrete
action sequences from an initial scene image for sequential manipulation problems that arise for example in task and
motion planning (TAMP).

Typical TAMP problems are formalized by combining reasoning on a symbolic, discrete level (e.qg. first-order logic) with
continuous motion planning such as nonlinear trajectory optimization. The action sequences represent the discrete
decisions on a symbolic level, which in turn parameterize a nonlinear trajectory optimization problem. Due to the
great combinatorial complexity of possible discrete action sequences, a large number of optimization/motion planning
problems have to be solved to find a solution, which limits the scalability of these approaches.

To circumvent this combinatorial complexity, we introduce deep visual reasoning: Based on a segmented initial image
of the scene, a neural network directly predicts promising discrete action sequences such that ideally only one motion
planning problem has to be solved to find a solution to the overall TAMP problem. Our method generalizes to scenes
with many and varying numbers of objects, although being trained on only two objects at a time. This is possible by
encoding the objects of the scene and the goal in (segmented) images as input to the neural network, instead of a fixed
feature vector.

We show that the framework can not only handle kinematic problems like pick-and-place (as typical in TAMP), but
also tool-use scenarios for planar pushing under quasi-static dynamic models. Here, the image based representation
enables generalization to other shapes than during training. Results show runtime improvements of several orders of
magnitudes by, in many cases, removing the need to search over the discrete action sequences.

Keywords
Task and Motion Planning, Deep Learning, Sequential Manipulation, Physical Reasoning, Planar Pushing, Logic
Geometric Programming, Offline Reinforcement Learning, Deep Q-Learning

1 Introduction mostly due to kinematic limits and geometric constraints,
the majority of action sequences are actually infeasible.
Moreover, it typically takes more computation time for a
motion planner to reliably detect infeasibility of a high level
action sequence than to find a feasible motion when it exists.
Proving infeasibility is, in many cases, not even possible.
Also for a feasible action sequence, the resulting motion
planning problem in itself is often non-trivial and hard
to solve. Consequently, sequential manipulation problems,
which intuitively seem simple, can take a very long time to
solve.

To overcome this combinatorial complexity, we aim to
learn to predict promising action sequences from the scene
as input. Using this prediction as a search heuristic on the
symbolic level, we can drastically reduce the number of
motion planning problems that need to be evaluated. Ideally,

A major challenge in sequential manipulation problems
is that they inherently involve discrete and continuous
aspects. To account for this hybrid nature of manipulation,
Task and Motion Planning (TAMP) problems are usually
formalized by combining reasoning on a symbolic, discrete
level with continuous motion planning. The symbolic level,
e.g. defined in terms of first-order logic, proposes high level
discrete action sequences for which the motion planner, for
example nonlinear trajectory optimization or a sampling-
based method, tries to find configurations and motions that
fulfill the requirements induced by the high level action
sequence or return that the action sequence is infeasible.
While most TAMP approaches focus on kinematic tasks
like pick and place, the hybrid nature of manipulation more
broadly appears in manipulation planning through contacts,
where it is typically addressed in terms of mixed integer
optimization formulations.

Due to the high combinatorial complexity of possible
discrete action sequences or integer assignments, a large
number of (potentially hard) motion planning problems
have to be solved to find a solution to the overall
TAMP/manipulation problem. This is mainly caused by
the fact that many TAMP problems are difficult, since,
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(a) initial scene from which the image
is captured

- - Il

(d) action 3 (grasp)

(b) action 1 (grasp), remove
occupying object

(e) action 4 (grasp), handover

(c) action 2 (place)

(f) action 5 (place), goal achieved

Figure 1. Typical scene of the pick-and-place experiment: The yellow object should be placed on the red spot, which is, however,
occupied by the blue object. Furthermore, the yellow object cannot be reached by the robot arm that is able to place it on the red
spot. Therefore, the two arms have to collaborate to solve the task. In this case, the network decides for a handover solution.

we seek to directly predict a feasible and cost efficient action
sequence, requiring only a single motion planning problem
to be solved.

However, learning to predict such action sequences
imposes multiple challenges. First of all, the objects in
the scene and the goal have to be encoded as input to
the predictor in a way that enables similar generalization
capabilities to classical TAMP approaches with respect to
scenes with many and changing numbers of objects and
goals. Secondly, the large variety of such scenes and goals,
especially if multiple objects are involved, makes it difficult
to generate a sufficient dataset.

Recently, Wells et al. (2019) and Driess et al. (2020b)
proposed a classifier that predicts the feasibility of a motion
planning problem resulting from a discrete decision in the
task domain. However, a major limitation of their approaches
is that the feasibility for only a single action is predicted,
whereas the combinatorial complexity of TAMP especially
arises from action sequences and it is not straightforward to
utilize such a classifier for action sequence prediction within
TAMP.

To address these issues, we train a neural network to
predict action sequences from the initial scene and the goal
as input. An important question is how the objects in the
scene and the goal can be encoded as input to the predictor
to ensure strong generalization. By encoding the objects (and
the goal) in the image space, we show that the network is able
to generalize to scenes with many and changing numbers of
objects with only little runtime increase, although it has been
trained on only a fixed number of objects.
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Compared to a purely discriminative model, since the
predictions of our network are goal-conditioned, we do not
rely on the network to search over many sequences, but
can directly generate promising sequences with the network
efficiently.

The predicted action sequences parameterize a nonlinear
trajectory optimization problem that optimizes a globally
consistent path fulfilling the requirements induced by the
actions. This not only allows us to solve typical kinematic
problems like pick and place, but also problems that
involve dynamic models. In our case, we build upon the
contact formulation from Toussaint et al. (2020) to solve
manipulation problems where the robot has to utilize a
hook-shaped tool to push and/or pull an object to a desired
target location. In order to make this possible, we extend
the formulation from Toussaint et al. (2020) by introducing
additional discrete decisions that model which part of
the tool should establish contact with which side of the
object. This robustifies the convergence of the optimizer,
but also introduces additional combinatorics, which we
can tackle with our proposed network. For this scenario,
we demonstrate another advantage of the image based
representation, namely that the network can also generalize
to other shapes than during training, since the side to push on
the object is also encoded in the image space.

To summarize, our main contributions are:

* A convolutional, recurrent neural network that predicts
from an initial segmented scene image and a task
goal promising action sequences, which parameterize
a nonlinear trajectory optimization problem, to solve
the TAMP problem.
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* A way to integrate this network into the tree search
algorithm of the underlying TAMP framework.

* We demonstrate that the network generalizes to
situations with many and varying numbers of objects
in the scene, although it has been trained on only two
objects at a time.

* We demonstrate the method not only on typical
kinematic pick and place scenarios, but also in a
scenario where a hook-shaped tool has to be used to
push/pull an object to a desired target location.

* The image representation enables the network to
generalize to other shapes than during training for the
pushing scenario.

From a methodological point of view, this work combines
nonlinear trajectory optimization, first-order logic reasoning
and deep convolutional, recurrent neural networks.

The present work is an extended version of Driess et al.
(2020a). Apart from more in-depth explanations, we include
a new set of experiments on a tool-use pushing scenario
(Sec. 5.3), where we also show generalization capabilities
to other shapes than during training. Moreover, we provide
more evaluations of the existing experiments, e.g. with
an investigation of the data efficiency of the approach.
Furthermore, we extend the framework to not only being able
to find feasible solutions as in the original work, but also
taking the trajectory costs into account.

The rest of the paper is organized as follows. We describe
LGP as the TAMP framework of this work in Sec. 3.
Then in Sec. 4 the deep visual reasoning neural network
methodology, its architecture and how it can be integrated
into the LGP tree search algorithm is proposed. In Sec. 4.5
we discuss the relation of our proposed network to offline
reinforcement learning. Sec. 5.2 and Sec. 5.3 present the
results of the pick and place as well as the pushing
experiment, respectively. A discussion about the strengths
and limitations of the framework can be found in Sec. 6.

2 Related Work
2.1

There is great interest in learning to mimic planning itself.
The architectures in Tamar et al. (2016); Okada et al. (2017);
Srinivas et al. (2018); Amos et al. (2018) resemble value
iteration, path integral control, gradient-based trajectory
optimization and iterative LQR methods, respectively. For
sampling-based motion planning, Ichter et al. (2018) learn an
optimal sampling distribution conditioned on the scene and
the goal to speed up planning. To enable planning with raw
sensory input, there are several works that learn a compact
representation and its dynamics in sensor space to then apply
planning or reinforcement learning (RL) in the learned latent
space (Boots et al. (2011); Xie et al. (2019); Ha et al. (2018);
Ichter and Pavone (2019); Watter et al. (2015); Finn et al.
(2016); Lange et al. (2012); Silver et al. (2017)). Another
line of research is to learn an action-conditioned predictive
model (Finn and Levine (2017); Xie et al. (2019); Paxton
et al. (2019); Ebert et al. (2017); Dosovitskiy and Koltun
(2017); Pascanu et al. (2017); Racaniere et al. (2017)). With
this model, the future state of the environment for example
in image space conditioned on the action is predicted, which

Learning to Plan
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can then be utilized within MPC (Finn and Levine 2017; Xie
et al. 2019) or to guide tree search (Paxton et al. 2019). The
underlying idea is that learning the latent representation and
dynamics enables reasoning with high-dimensional sensory
data. However, a disadvantage of such predictive models is
that still a search over actions is necessary, which grows
exponentially with sequence length. For our problem which
contains handovers or other complex behaviors that are
induced by an action, learning a predictive model in the
image space seems difficult. Most of these approaches focus
on low level actions. Furthermore, the behavior of our
trajectory optimizer is only defined for a complete action
sequence, since future actions have an influence on the
trajectory of the past. Therefore, state predictive models
cannot directly be applied to our problem.

The proposed method in the present work learns a relevant
representation of the scene from an initial scene image such
that a recurrent module can reason about long-term action
effects without a direct state prediction.

2.2 Learning Heuristics for TAMP and MIP in
Robotics

A general approach to TAMP (Garrett et al. (2020)) is
to combine discrete logic search with a sampling-based
motion planning algorithm (Kaelbling and Lozano-Pérez
2011; de Silva et al. 2013; Srivastava et al. 2014; Dantam
et al. 2018) or constraint satisfaction methods (Lagriffoul
et al. (2012); Lagriffoul et al. (2014); Lozano-Pérez and
Kaelbling (2014)). A major difficulty arises from the fact
that the number of feasible symbolic sequences increases
exponentially with the number of objects and sequence
length. To reduce the large number of geometric problems
that need to be solved, many heuristics have been developed,
e.g. Kaelbling and Lozano-Pérez (2011); Rodriguez et al.
(2019); Driess et al. (2019a), to efficiently prune the
search tree. Another approach to TAMP is Logic Geometric
Programming (LGP) (Toussaint 2015; Toussaint and Lopes
2017; Toussaint et al. 2018, 2020; Ha et al. 2020), which
combines logic search with trajectory optimization. The
advantage of an optimization based approach to TAMP is
that the trajectories can be optimized with global consistency,
which, e.g., allows to generate handover motions efficiently.
LGP will be the underlying framework of the present work.
For large-scale problems, however, LGP also suffers from the
exponentially increasing number of possible symbolic action
sequences (Hartmann et al. (2020)). Solving this issue is one
of the main motivations for our work.

Instead of handcrafted heuristics, there are several
approaches to integrate learning into TAMP to guide the
discrete search in order to speed up finding a solution
(Garrett et al. (2016); Chitnis et al. (2016); Kim et al. (2019,
2018); Wang et al. (2018); Chitnis et al. (2020)). However,
these mainly act as heuristics, meaning that one still has
to search over the discrete variables and probably solve
many motion planning problems. In contrast, the network in
our approach generates goal-conditioned action sequences,
such that in most cases there is no search necessary
at all. Similarly, in optimal control for hybrid domains
mixed-integer programs suffer from the same combinatorial
complexity (Hogan and Rodriguez 2016; Hogan et al.
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2018; Doshi et al. 2020). LGP also can be viewed as
a generalization of mixed-integer programs. In Carpentier
et al. (2017) (footstep planning) and Hogan et al. (2018)
(planar pushing), learning is used to predict the integer
assignments, however, this is for a single task only with no
generalization to different scenarios.

A crucial question in integrating learning into TAMP
is how the scene and goals can be encoded as input
to the learning algorithm in a way that enables similar
generalization capabilities of classical TAMP. For example,
in Paxton et al. (2019) the considered scene contains always
the same four objects with the same colors, which allows
them to have a fixed input vector of separate actions for
all objects. In Wilson and Hermans (2019) convolutional
(CNN) and graph neural networks are utilized to learn a state
representation for RL, similarly in Li et al. (2020). In Bejjani
et al. (2019), rendered images from a simulator are used
as state representation to exploit the generalization ability
of CNNs. The work of Kloss et al. (2020) exploits image
based representations for pushing scenarios, similar to our
encoding. In our work, the network learns a representation
in image space that is able to reason over complex action
sequences from an initial observation only and is able to
generalize over changing numbers of objects.

The work of Wells et al. (2019) and Driess et al. (2020b)
is most related to our approach. They both propose to
learn a classifier which predicts the feasibility of a motion
planning problem resulting from a single action. The input
is a feature representation of the scene (Wells et al. (2019))
or a scene image (Driess et al. (2020b)). While both show
generalization capabilities to multiple objects, one major
challenge of TAMP comes from action sequences and it is,
however, unclear how a single step classifier as in Wells
et al. (2019) and Driess et al. (2020b) could be utilized for
sequence prediction.

On challenge in TAMP scenarios that contain many
objects is to identify which objects are relevant for solving
the task, as has been considered in Lang and Toussaint
(2009) and Silver et al. (2020). Our proposed approach is
also able to reason over object importance, which makes the
generalization to multiple objects possible.

To our knowledge, the our work is the first that learns to
generate action sequences for an optimization based TAMP
approach from an initial scene image and the goal as input,
while showing generalization capabilities to multiple objects.

3 Logic Geometric Programming for
Task and Motion Planning

This work relies on Logic Geometric Programming (LGP)
(Toussaint (2015); Toussaint and Lopes (2017)) as the
underlying TAMP framework. The high-level main idea
behind LGP is a nonlinear trajectory optimization problem
over the continuous variable =, which is the path of all robot
joints and objects in the scene. The constraints and costs of
this trajectory optimization problem are parameterized by a
discrete variable s that represents the state of a symbolic
domain. The transitions of this symbolic variable are subject
to a first-order logic language that induces a decision tree.
Solving an LGP involves a tree search over sequences of this
discrete variable, where each leaf node represents a nonlinear
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trajectory optimization program (NLP). If a symbolic leaf
node, i.e. a node where the state s is in a symbolic goal state,
is found and its corresponding NLP is feasible, a solution to
the TAMP problem has been obtained. At all nodes, simpler
NLPs define lower bounds to the full trajectory optimization
problem, which can guide the search over the discrete
actions. The LGP formulation we present in this section is
based on a recent variant from Toussaint et al. (2020) that
additionally allows optimizing for physical interactions as
compared to the original formulation from Toussaint (2015).
However, in addition to Toussaint et al. (2020), we also
consider the search over actions that define a sequence of
symbolic states as part of the problem for the contact model
formulations introduced by Toussaint et al. (2020), where the
sequence of the symbolic state was specified manually.

3.1 Logic Geometric Programming (LGP)

Let X = X(s,5) C RMS) x SE(3)™(5:5) x R6"a(s:9) be
the configuration space as a function of the scene S and
the symbolic state variable s € S(S). This configuration
space contains the n(.S)-dimensional generalized coordinate
of robot joints, the poses of m(s,S) multiple rigid objects
and six dimensional wrench contact interactions for each of
the ney (s, S) contact pairs.

The idea is to find a globally consistent path x :
[0, KT| — X (sp(1),S) in this configuration space which
minimizes the LGP

KT
P(g,5) = ?é% c(x(t), &(t), &(t), sk, S) dt

210, KT] X (si(1y,5)

a1k, S1iK

S.t. (1a)
Viel.xr) : heq(2(t), 3 (t), k), S) =0 (1b)
Vieo,Kk1] Rineq (x(t),i(t),sk(t),S) <0 (1c)
Vier ikt e (@(kT), &(kT), a5, S) =0 (1d)
V=1, k'  ag € A(sg—1,95) (le)
Vi=1,..K 51, = succ(sg—1,ax) (1f)
z(0) = Zo(S) (1g)
s0 = 50(S5) (1h)
Sk € Sgoal(9)- (11)

The path x is assumed to be globally continuous (x €
C([0,TK])) and consists of K € N phases (the number is
part of the decision problem itself), each of fixed duration
T >0, in which we require smoothness = € C%([(k —
1)T, kT)). These phases are also referred to as kinematic
modes (Mason (1985); Toussaint et al. (2018)). Note that
the number of degrees of freedom of the objects as well as
the number of contact interactions depends on the symbolic
state sy(¢) with k(t) = [t/T|. Therefore, the dimension of
the path may vary between the phases. For example, the
symbolic state can express that a contact interaction should
take place at a certain phase, which introduces a wrench
interaction variable to the configuration space in that phase.

The functions c, fieq, hineg and hence the objectives in
phase k£ of the motion are parameterized by the discrete
variable (or integers in mixed-integer programming) si €
S(9), representing the state of the symbolic domain. The
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possible discrete transitions between sip_; and sj are
determined by the successor function succ(-, -), which is a
function of the previous state s;_; and the discrete action
ay, at phase k. The successor function is defined through the
first-order logic language.

The discrete actions ay, are of great importance for the rest
of the paper. Generally, those actions are grounded action
operators. Which actions are possible at which symbolic
state is determined by the logic and expressed in the set
A(S k—1, S )

The task or goal of the TAMP problem is defined
symbolically through the set Sgoa(g) for the symbolic goal
(a set of grounded literals) g € G(S), e.g. placing an object
on a table.

To complete the description, Ay, is a function that imposes
transition constraints on the path between the kinematic
modes. The quantity Z(S) is the scene dependent initial
continuous state. For fixed s it is assumed that ¢, heq and
hineq are differentiable.

A sequence of actions aj.x uniquely determines the
sequence of symbolic states sg.x for a given initial
symbolic state sg = 50(S). Therefore, we equivalently
express that obtaining a solution to the LGP means finding
an action sequence ai.x whose corresponding symbolic
state sequence reaches the symbolic goal state and the
corresponding nonlinear trajectory optimization problem is
feasible. We define the feasibility of an action sequence
a1.x = (a1,...,ax) via the existence of a respective path,
namely,

1 32:[0,KT] — X : (1b) — (1h)
0 else '

Fs(a1.x) = { 2

The complete LGP formulation (1), however, not only seeks
to find a feasible solution, but also an action sequence that
leads to the minimum trajectory costs (la) compared to all
other goal reaching sequences. We call a feasible solution
a solution to the TAMP/LGP problem, whereas we call a
solution that minimizes the cost an optimal solution of the
LGP. Due to the vast number of possible discrete action
sequences, obtaining optimal solutions is often intractable.
Therefore, we mostly focus on obtaining a feasible solution,
with the exception of Sec. 4.8 and 5.3.7.

The feasibility as defined in (2) is a theoretical property
of the resulting nonlinear program. In practice, we solve
(1) numerically by discretizing x with a finite number
of collocation points in time, which leads to a finite
dimensional optimization problem that we solve with an
augmented Lagrangian method with the Gauss-Newton
method in its inner loop. Therefore, Fgs(ai.x) is also
determined numerically in the following way. If the
accumulated constraint violations (heq 7 0, Rineq > 0) along
the discretized trajectory are below a certain threshold, then
the solution found by the optimizer is considered feasible,
otherwise infeasible.

3.2 Multi-Bound LGP Tree Search and Lower
Bounds

The logic induces a decision tree (called LGP-tree) through
the set of possible actions A(si_1,.5) (le) and the successor
function (1f). Solving a full path problem as a search
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heuristic to guide the tree search is too expensive. A key
contribution of Toussaint and Lopes (2017) is therefore to
introduce relaxations or lower bounds on (1) in the sense that
the feasibility of a lower bound is a necessary condition on
the feasibility of the complete problem (1), while these lower
bounds should be computationally faster to compute. Each
node in the LGP tree defines several lower bounds of (1).

More specifically, Multi-Bound LGP Tree Search uses
two lower bounds P;, P, where P; evaluates kinematic
feasibility of transition constraints hg, for a single
configuration only (akin to inverse kinematics), and
P, evaluates feasibility of a sequence of K transition
configurations. Only if both are feasible along a tree path it
evaluates the full trajectory LGP for a leaf node.

As we will show in the experiments, even with those
bounds, a large number of NLPs have to be solved to find
a feasible solution for problems with a high combinatorial
complexity. Therefore, using these bounds is not sufficient
to achieve desirable solution times for the problems we
consider in the experiments. This is especially true if many
decisions are feasible in early phases of the sequence, but
then later become infeasible, because then the lower bounds
do not help much in pruning the search tree. These lower
bounds are, however, highly important to make the data
generation process tractable.

4 Deep Visual Reasoning

The central idea of this work is, given the scene and the task
goal as input, to predict a promising discrete action sequence
a1.x = (a1,...,ax) which reaches a symbolic goal state
and its corresponding trajectory optimization problem is
feasible. An ideal algorithm would directly predict an action
sequence such that only a single NLP has to be solved to find
an overall feasible solution, which consequently would lead
to a significant speedup in solving the LGP (1).

We will first describe more precisely what should be
predicted, then how the scene, i.e. the objects and actions
that operate on them, and the goal can be encoded as input to
a neural network that should perform the prediction. Finally,
we discuss how the network is integrated into the tree search
algorithm in a way that either directly predicts a feasible
sequence or, in case the network is mistaken, acts as a
search heuristic to further guide the search without losing
completeness, i.e. the ability to find a solution if one exists.
To allow for a more thorough comparison, we additionally
propose an alternative way to integrate learning into LGP
based on a goal-independent recurrent feasibility classifier.

4.1 Predicting Promising Action Sequences

First of all, we define for the goal g the set of all action
sequences that lead to a symbolic goal state in the scene S
as

T(g,S):{al:K : Vfil a; € A(Si_l,S), So = 50(5) (3)

s; = succ(s;_1,a;), Sk € Sgoal(g)}.

In relation to the LGP-tree, this is the set of all leaf nodes and
hence candidates for an overall feasible solution. One idea
is to learn a discriminative model which predicts whether
a complete sequence leads to a feasible NLP and hence to
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a solution. To predict an action sequence one would then
choose the sequence from 7 (g, S) where the discriminative
model has the highest prediction. However, computing
T(g9,S) (up to a maximum K) and then checking all
sequences with the discriminative model is computationally
inefficient or even intractable, since |7 (g, S)| can be very
large (see Tab. 1).

Instead, we propose to learn a function 7 (a neural
network) that, given a scene description S, the task goal g
and the past decisions ai.;—1, predicts whether a next action
ay, at the current time step k is promising in the sense of
the probability that there exist future actions ay41.x such
that the complete sequence a;.x leads to a feasible NLP that
solves the original TAMP problem. Formally,

ﬂ-(ak:a g, Q1,-..,0k—1, S) =
p(aszEIak+1 ..... ax ar.g € T(gvs)a FS (alzK) =1
Aky Gy A1y, Qf—1, S). 4

Note that this includes K = k, meaning the case where at
step k there exists an action such that s;, € Sgoa and the NLP
is feasible.

This way, we can utilize 7 to generate an action sequence
by choosing the action at each step where 7 has the highest
prediction. The exact algorithm will be presented in Sec. 4.6.

4.2 Training Targets

The crucial question arises how 7 as defined in (4) can
be trained. The semantics of 7 is related to a universal Q-
function, but it evaluates actions aj based on an implicit
representation of state (see Sec. 4.5). Furthermore, it turns
out that we can cast the problem into supervised learning by
transforming the data into suitable training targets. Assume
that one samples scenes S*, goals g* as well as goal-reaching
action sequences a’, ., € T (g*, S*), e.g. with Multi-Bound
LGP Tree Search. For each of these sampled sequences, the
feasibility of the resulting NLP is determined and saved in
the set

Ddata - { (Sla all;Kiagla FS7' (allKl) ) }

n

®)

)
=1

where the feasibility Fg: in scene S’ is as defined in (2).
Based on this dataset, we define the training dataset for 7 as

Disain = { (S0 ', 1)} ©

=1

where f? € {0, I}Ki is a sequence of binary labels. Its jth
component f; indicates for every subsequence a!. ; Whether
it should be classified as promising as follows

L Py (af) =1
1 3 (Sl7al1:KlaglvFl) € Ddata :
i = Fl= Fy(d ) =1 . O
Agl=g' A all:j = aj,;
0 else

Superscripts denote dataset indexing. If the action sequence
is feasible and solves the problem specified by ¢°, then f; =
1forall j=1,..., K" (first case). This is the case where
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« should predict a high probability at each step k& to follow
a feasible sequence. If the action sequence with index i is
not feasible, but there exists a feasible one in Dgy,t, (index
1) which has an overlap with the other sequence up to step
j.ie.al.; = al;, then fI = 1as well (second case). Also in
this case the network should suggest to follow this decision,
since it predicts that there exist future decisions which lead
to a feasible solution. Finally, in the last and third case where
the sequence is infeasible and has no overlap with other
feasible sequences, f;f = 0, meaning that the network should
predict to not follow this decision. This data transformation
is a simple pre-processing step that allows us to train 7 in
a supervised sequence labeling setting, with the standard
(weighted) binary cross-entropy loss. Another advantageous
side-effect of this transformation is that it creates a more
balanced dataset with respect to the training targets.

4.3 Input to the Neural Network — Encoding a,
gandsS

So far, we have formulated the predictor 7 in (4) in terms of
the scene .S, symbolic actions a and the goal g of the LGP
(1). In order to represent 7 as a neural network, we need to
find suitable encodings of a, g and S.

4.3.1 Splitting actions into action operator symbols and
objects An action a is a grounded action operator, i.e. it is a
combination of an action operator symbol and objects in the
scene it refers to. The same holds true for a goal g. While
the number of action operators is assumed to be constant, the
number of objects can be completely different from scene
to scene. Most neural networks, however, expect inputs of
fixed dimension. In order to achieve the same generalization
capabilities of TAMP approaches with respect to changing
numbers of objects, we encode action and goal symbols very
differently to the objects they operate on. In particular, object
references are encoded in a way that includes geometric
scene information.

Specifically, given an action a, we decompose it into
a=(a,0) e A0(s,5) C AxP(O(S)), where a € A is
its discrete action operator symbol and O € P(O(S)) the
tuple of objects the action operates on. Note that O is a tuple
of objects, since an action a can operate on multiple objects.
For example, placing an object on a table requires two
elements from O to fulfill the predicate. The goal is similarly
decomposed into g = (g,0y), g € G, Oy € P(O(S)). This
separation seems to be a minor technical detail, which
is, however, of key importance for the generalizability of
our approach to scenes with changing numbers of objects,
following the generalizability of the underlying first-order
logic.

The cardinality of A and G is constant and independent
from the scene, no matter how many objects are in the scene.
Therefore, through the separation of @ into a and O, we can
input @ and g directly as a one-hot encoding to the neural
network.

4.3.2 Encoding the objects O and O, in the image space
For our approach it is crucial to encode the information about
the objects in the scene in a way that allows the neural
network to generalize over objects, i.e. the number of objects
in the scene and their properties. By using the separation
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(b) Action-object image for grasp (c) Action-object image for place (d) Goal- and action-object image
action with the left robot arm and action with the left robot arm
the blue object that occupies the

(for place action) representing
placing the yellow target object on
the red goal location

representing placing the blue
object on the table

Figure 2. Visualization of the action-object image encodings (O, S) for an example test scene (a) of the pick and place
experiment from Sec. 5.2.9 (generalization to multiple objects). In all images, the first channel is a depth channel of the complete
scene. The images always refer to the initial scene configuration (a). The table mask in (c) covers the complete table, hence is
completely white and indicates that the object should be placed somewhere on the table. I; and I> correspond to the first two
actions chosen by the network. Here, the network found a solution to solve the task with a sequence of 6 actions.

of the last paragraph, we can introduce the mapping I :
(0, 8) — R(netno)xwxh which encodes any scene S and
object tuple O to a so-called action-object-image encoding,
namely an n. + nop-channel image of width w and height
h, where the first n. channels represent an image of the
initial scene and the last no channels are binary masks
which indicate the subset of objects that are referenced by
the action. These last mask channels not only encode object
identity, but substantial geometric and relational information,
which is a key for the predictor to predict feasible action
sequences.

In Fig. 2, we show these image encodings for a scene of the
pick and place experiment. Fig. 2b and 2c show action-object
images, whereas Fig. 2d shows the goal-image encoding.

It is important to understand that no is not the number
of objects in the scene, but the maximal number of objects
that any action refers to. In the experiments, the scene image
is a depth image, i.e. n. = 1 and the maximum number of
objects that a single action refers to is two, hence np = 2.
If an action takes less objects into account than no, this
channel is zeroed. Since the maximum number no depends
on the set of actions operator symbols .4, which has a fixed
cardinality independent from the scene, this is no limitation.
The masks create an attention mechanism which is the key
to generalize to multiple objects (Driess et al. (2020b)).
However, since each action object image I(O,S) always
contains a channel providing information of the complete
scene, also the geometric relations to other objects can be
taken into account. This is of crucial importance as illustrated
with the following example. Assume that the goal location
is occupied with an object as in Fig. 2. If the action-object
image of a place action to place an other object on the goal
location only consisted of the masks of the target object and
the goal, then the network would not be able to reason that
this action sequence is infeasible. Therefore, the purpose of
the masks is to encode object identity of the directly involved
objects in an action, while the channel of the whole scene is
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of great importance to enable the network to take potentially
other objects into account.

Please note that these action-object-images
correspond to the initial scene.

always

4.4 Network Architecture

Fig. 3 shows the network architecture that represents 7 as
a convolutional recurrent neural network. Assume that in
step k the probability should be predicted whether an action
ar = (ax, Oy) for the goal g = (g,0,) in the scene S is
promising. The action object images I(Oy, S) as well as the
goal object images I(O,, S) are encoded by a convolutional
neural network (CNN). The discrete action/goal symbols
a, g are encoded by fully connected layers with a one-hot
encoding as input. Since the only information the network
has access to is the initial configuration of the scene, a
recurrent neural network (RNN) takes the current encoding
of step k and the past encodings, which it has to learn to
represent in its hidden state hy_1, into account. Therefore,
the network has to implicitly generate its own predictive
model about the effects of the actions, without explicitly
being trained to reproduce some future state. The symbolic
goal g and its corresponding goal object image I(Oy, S) are
fed into the neural network at each step, since it is constant
for the complete task. The weights of the CNN action-object-
image encoder can be shared with the CNN of the goal-
object-image encoder, since they operate on the same set of
object-images. To summarize,

(p7'r7 hk) = TINN (aka I(Ok; S)vgv-[(Og, S)v hkfl)
= 7 (ax, 9, a1:6-1,5). 3

4.5 Relation to Q-Functions and Offline
Reinforcement Learning

In principle, one can view the way we define = in (4)
and how we propose to train it with the transformation
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Figure 3. Proposed neural network architecture.

(7) as learning a goal-conditioned Q-function in a partially
observable Markov decision process (POMDP), where a
binary reward of 1 is assigned if a complete action sequence
is feasible and reaches the symbolic goal. Since the learning
is performed based on an offline collected dataset, one can
interpret our work as offline or batch reinforcement learning.

However, we want to clarify that the decision process m
has to reason about cannot be directly associated with an
underlying continuous state of the manipulation system. A
sequence of discrete actions parameterizes the constraints
of the trajectory optimization problem. These constraints do
usually not fully specify the behavior of the motion within
a phase. Otherwise, no trajectory optimization would be
necessary. Instead, the optimization problem tries to find
the remaining degrees of freedom such that all constraints
implied by the action sequence can globally be fulfilled.

Therefore, the Q-function (and 7) should be understood
as a Q-function for the abstract POMDP of making decisions
such that a feasible optimization problem is obtained. While
the symbolic state transition dynamics (1f) is known through
the logic, it is not known a priori if a certain choice of actions
leads to a feasible optimization problem without attempting
to solve it, i.e. executing the discrete decisions, which is in
parts caused by the fact that the problems are non-convex.

To illustrate that, we show in Fig. 4 the fact that future
discrete actions can change the resulting optimized trajectory
in earlier motion phases.

This raises the question which state/action representation
is appropriate for learning such a Q-function for the abstract
decision process, since it has to be conditioned on the objects
in the scene and their geometry. In particular, the only state
information available is the initial scene. Taking discrete
actions does not lead to well-defined new observations in
terms of new input images or robot configurations.

We propose the action-object-image sequence as a
powerful input representation for such a Q-function for
multiple reasons. First, it would not be sufficient to base
the representation on the symbolic state alone, since the
symbolic state does not contain sufficient information,
neither about the geometry of the objects, their geometric
realizations nor the effects of all past decisions on the NLP.
For example, picking an object up and placing it again on
the same table does not change the symbolic state, but the
resulting continuous state can then be completely different.
Therefore, the history of the symbolic state needs to be taken
into account.

Furthermore, it is difficult to encode the symbolic state
as an input, especially for multiple objects. Therefore, we
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implicitly encode the state via the sequence (or history)
of actions. This is not only sufficient, since a sequence of
actions uniquely determines the symbolic state sequence, but
advantageous, since actions explicitly only depend on a small
subset of objects, as compared to the complete symbolic
state. But, as discussed before, the actions also require the
complete initial scene information, which is provided in
terms of the image of the whole scene. The fact that the
action-object images contain geometry information of the
scene couples the abstract symbolic level to the concrete
scene instance, making the reasoning process possible.

In summary, our network has to learn a state representation
for the abstract decision process from the past action-object
image sequence, while only observing the initial state in form
of the depth image of the scene as input, conditioned on the
goal.

Through the data-transformation (7), we can frame
learning 7 or the Q-function as a (stable) supervised learning
problem on offline collected data.

4.6 Algorithm

Algo. | presents the pseudocode how 7 is integrated in the
tree search algorithm.

The main idea of the algorithm is to maintain the set £
of expand nodes. A node n = (s, (a, O), k, pr, h, Nparent) in
the tree consists of its symbolic state s(n), action-object pair
(@, 0)(n), depth k(n), i.e. the current sequence length, the
prediction of the neural network p,(n), the hidden state of
the neural network h(n) and the parent node npareni(n2). We
write -(n) to denote an entry of the node tuple.

At each iteration, the algorithm chooses the node ny; of
the expand set where the network has the highest prediction
(line 5), i.e. where the network predicted that choosing this
action leads to an overall feasible solution for the task goal g
in the future. For all possible next actions, i.e. children of n7,
the network is queried to predict their probability leading to
a feasible solution, which creates new nodes (line 10).

If a child node reaches a symbolic goal state (line 11), it is
added to the set of leaf nodes L, otherwise to the expand set.

Then those already found leaf nodes from the set L are
investigated. This set of leaf nodes contains the candidates
for a feasible solution whose corresponding trajectory
optimization problems have not yet been solved and checked
for feasibility (L is related to a subset of 7 (g,5)). In line
18, the algorithm chooses the leaf node n7 from L with the
highest prediction of the neural network as the first one for
which the trajectory optimization problem is solved (line 25).
If the NLP P ((a,O)1.x(n}), (g, Og4),S) corresponding to
the action sequence of the leaf node n7 is feasible, a solution
of the overall TAMP problem in terms of the trajectory
x =arg P ((a,0)1.x(n}),(g,0,4),S) in the configuration
space X is found. If it is not feasible and there are still nodes
in L, the one with the highest prediction of the remaining
ones is tested for feasibility by solving the corresponding
NLP. Otherwise, the expansion of the tree continues up to
a maximum sequence length K.

4.6.1 Feasibility Threshold and Completness of the
Algorithm Since during the expansion of the tree, leaf nodes
which are unlikely to be feasible are also found, only
those trajectory optimization problems are solved where
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(a) Action sequence grasp(R Oyeliow), grasp(L Opjue)

(b) Action sequence grasp(R Oyeliow), grasp(L Ope), place(L Opye Ogoal)

Figure 4. lllustration that the behavior of the optimized trajectory is only fully defined for a complete sequence of discrete actions.
Both Fig. 4a and Fig. 4b have the same first two discrete actions. However, in Fig. 4b (bottom row), the fact that there is a third
discrete action influences the trajectory in the past (third image from the left). This is because the actions impose constraints that
only partially determine the motions. The optimizer then tries to find a motion that is globally consistent with all constraints. Hence,

the yellow object is moved away from the goal location already in the second phase of the motion although no discrete action
explicitly told it to do so. Further, one can also see that although in the first motion phase (second image from the left) only
constraints for grasping the yellow object are present, the blue arm is already moving.

the prediction p, is higher than the feasibility threshold
firesn (set to 0.5 in the experiments). Otherwise, if the
highest prediction in the set L is below this threshold, the
investigation of the leaf nodes is stopped (lines 19 and 21)
until new leaf nodes are found in the expansion step.

This greatly reduces the number of NLPs that have to
be solved, since the information provided by the network
is not only used to guide the tree search to find promising
leaf nodes quickly, but also to discard leaf nodes that are
predicted to be infeasible by the network.

However, one cannot expect that the network never
erroneously has a low prediction although a leaf node would
be feasible. In order to prevent not finding a feasible solution
in such cases, the function adjustFeasibilityThreshold(-)
(line 20) reduces this threshold with a discounting factor
v <1, i.e. firesh = ¥ - finresh, OF sets it to zero if all leaf
nodes with a maximum depth of K,,x have been found.
This allows us to provide a completeness guarantee of the
algorithm, under the following assumption.

Assumption 1. [fa scene for a given goal contains at least
one action sequence up to a maximum length K, that
corresponds to a feasible nonlinear program, the trajectory
optimizer numerically converges to a feasible solution for
that action sequence.

Proposition 1. Under assumption 1, Algo. 1 is complete.

Proof. Clear by construction of Algo. 1 and the feasibility
threshold discounting through adjustFeasibilityThreshold(-).

This means that if a scene contains at least one action
sequence that reaches the symbolic goal for which the
nonlinear trajectory optimizer can find a feasible motion,
Algo. 1 finds this solution. In particular, the neural network
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does not prevent finding a solution, even in case of prediction
errors. Another way to interpret proposition 1 is that the
network 7 together with the threshold mechanism is a goal-
conditioned admissible heuristic for a tree search algorithm.

In assumption 1 we assumed a maximum sequence length
Kax to be given for which the task can be solved. If K, is
not known, one can simply wrap Algo. 1 in an outer loop
that increases Ky.x and add a stopping criteria for line 4
when K, is reached. Then Algo. | is also complete for
an unknown K ,y.

If we set firesn to a negative value, then the algorithm
is automatically complete without the adjustment of
the threshold, under the penalty of potentially solving
unnecessary NLPs by not exploiting all the information m
can provide. In the experiments in Sec. 5.2.8, we investigate
the influence of the threshold and its adjustment both on
completeness and performance.

4.6.2 Implementation As an important remark, for the
implementation we store the hidden state of the recurrent
neural network in its corresponding node. Furthermore,
the action-object images and action encodings also have
to be computed only once, since all action-object images
correspond to the initial scene configuration. Therefore,
during the tree search, only one pass of the recurrent (and
smaller) part of the complete myn has to be queried for each
new child node, which is very fast.

4.7 Comparative Alternative:
Goal-Independent Recurrent Feasibility
Classifier

The methods of Driess et al. (2020b) and Wells et al.
(2019) learn a feasibility classifier for single actions only,
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Algorithm 1 LGP with Deep Visual Reasoning

1: Input: Scene S, goal g and max sequence length K,y
22 L=10
3 F= {no}
4: while no solution found do

> choose node from expand set with highest prediction

D> set of leaf nodes

> set of nodes to be expanded, ng is root node

5: ny = argmax  pp(n)

neEE A k(n)<Kmax
6 E+ E\{n}}
7. forall (a,0) € AO(s(n%),S) do
5 (0, ) = s (@, 1(0,.5),5, 1Oy ), ()
9: s = succ(s(nyy), (@, )) k= ( B+ 1
10: n = (8, (@,O),k,pﬂ, ) > new node
1 if s € Sgoai(g) then
12: L+ LU {n} > if goal state, add to leaf node set
13: else
14: E—FEU {n} > if no goal state, add to expand set
15: end if
16: end for

17: while |[L| > 0 do

> choose node from leaf node set with highest prediction

> consider already found leaf nodes

18: n} = argmax pp(n)

nerL
19: iprr (”*L) < fthresh then
20: finresh < adjustFeasibilityThreshold( finresh)
21: break
22: end if
23: L+ L\{n}}
24: (&, O)I:K = (ZL, O)l:k(n’i) (nz) > extract action seq.
25: solve NLP z = arg P ((a, O)1.x, (g, Oq), S)
26: if feasible, i.e. Fs((a,O)1.x) = 1 then
27: solution (@, O)1.x with trajectory x found
28: break all and return solution z, (a, 0)1.x
29: end if
30: end while

31: end while

i.e. independent of a goal and not considering sequences.
To allow for a comparision, we present in this section an
approach to extend the idea of a feasibility classifier to action
sequences and how it can be integrated into our TAMP
framework.

The basic idea is to classify the feasibility of a motion
planning problem that results from an action sequence with
a recurrent classifier, independently from and agnostic to
a goal. This way, during the tree search, solving an NLP
as a lower bound to guide the search can be replaced
by evaluating the classifier, which usually is order of
magnitudes faster. Formally, we seek to learn a function that,
given a scene description S and the past decisions a1.x—1,
predicts whether choosing an action ay at the time step K
leads to a feasible NLP for the resulting action sequence a;. i

TRC (aK, Aiy..., QK 1, S) = p(Fs ((J,l:[() =1 ‘ S) (9)
This is independent from the overall goal of the TAMP
problem. Instead, mrc should predict the feasibility for
arbitrary action sequences a;.x of different lengths K. Since
it therefore also operates on subsequences that do not reach
the symbolic goal yet, querying mgrc can be interpreted as a
heuristic that has a similar role as the lower bounds to guide
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the tree search. Note that this classifier is slightly different
to a discriminative model that is trained only on complete
goal-reaching sequences.

Regarding the dataset for training such a classifier, assume
that we have sampled a scene S° and a goal-reaching action
sequence aiz i € T(g,5). Then we include in the dataset
not only the feasibility of (S*,a. .., Fsi(ay.k:)), but also
the feasibility of the subsequences up to Ki <K' ie.

Dro = U (8" al; Fse())} 00)
i=1j=1
with
F§.(j) = Fsi (1) (11)
where Fls:(0) = 1 and the index
K; =max{j < K* : (12)

Fa(j) =1V (Fau(@—1)=1AF&L(j) =0)}.

Superscripts here denote dataset indexing. For the actual
implementation, we basically choose the same architecture
as for myN, but mrey, only takes the current action-object-
image pair as well as the hidden state of the previous step as
input and predicts whether the action sequence up to this step
is feasible, i.e.

a1, S) .
13)

TRy (ks 1(O, S), hiy—1) = mre (ak, a1,. ..,

Sec. 5.2.6 presents an empirical comparison of this recurrent
classifier to the goal-conditioned predictor mnN.

4.8 Predicting Trajectory Cost

So far, we were only interested in finding a feasible action
sequence. The full LGP formulation (1), however, seeks not
only for feasibility, but also optimality with respect to the
trajectory costs measured by the function ¢ in (la). For
typical pick-and-place scenarios as considered in Sec. 5.2,
the trajectory costs penalize accelerations of the robot joints.
Therefore, the trajectory costs mainly depend on the action
sequence length K. Due to the way the network is integrated
into the tree search algorithm, cf. Sec. 4.6 and Algo. 1, it
empirically turned out that in many cases the network already
finds solutions with low costs.

However, for the more dynamic pushing experiment of
Sec. 5.3, there can be more significant differences in the
trajectory costs even for action sequences of the same
sequence length. Therefore, we present in this section
a simple modification of the network and especially the
training targets to enable the network to predict the expected
trajectory cost for an action sequence. This way, we can
utilize the network to find more cost optimal solutions
compared to the case where we only take feasibility into
account.

Let P(a1.x,9,S) denote the cost of the NLP (1) when
fixing the action sequence ai.x. In order to represent
infeasibility as a finite value, we exponentiate the cost,
hence an infeasible sequence has a value of exp(—oo) = 0.
Therefore, the network, which we call cost prediction 7o,
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should be trained to predict for the scene .S, the goal g and
the past decisions ay.;—1 at step k of the sequence whether
an action ay, is promising in the sense of there exist future
actions ag.1. i such that the complete sequence a1.x not only
leads to a feasible solution, but also the minimum achievable
cost of a complete future sequence when following ay, i.e.

Teost (Ak, G, Q14 -« -y A—1,5) =
max exp(—P(a1.x,9,5)) (14)
Atk
s.t. Fs(a1.x) =1
a1.x €T (g,5).

The training targets of the ¢th data point for this network are
now a sequence of positive values f* € Rfé, where their jth

component f;f > 0 is defined as
i _p(,l 1 ql
fj - (Sl ol mlaﬁl . eXp( P(al;]{lag 7S ))
Ay 109 )G data
Fl:Fsl (ali:‘Kl)zl
lgL:gf_
ay.;=ai;

5)

If there exists no future feasible action sequence when taking
ag or aj. is already infeasible, f; = 0, since we defined
P(a1.x,g,S) = oo for an infeasible action sequence.

Analogously to the discussion in Sec. 4.5, the role of m¢qg
is very similar to the cost-to-go prediction expressed by a
Q-function, where there are only terminal costs (the costs
of the trajectory optimization problem for a complete action
sequence). Instead of performing Q-iteration, we calculate
this cost-to-go on the dataset explicitly, which leads to a
stable supervised learning problem. While the feasibility
network 7nN has a sigmoid output and is trained with
a weighted binary cross-entropy loss, the cost prediction
network 7.5 has a linear output and is trained with a squared
error loss. The network architecture, i.e. especially the input
encoding and the recurrent structure, of mxN and 7oy is the
same, with the only difference of the output, as mentioned.

When integrating 7. in the tree search algorithm, the
exact same algorithm as for the feasibility network can be
used. However, the notion of the feasibility threshold firesh
and its adjustment (lines 19 and 20 in Algo. 1) has to be
changed slightly to reflect the fact that the outputs of 7o
are now not probabilities but negatively exponentiated costs
and a value of zero corresponds to infeasibility. Therefore,
if o5t 1 below a certain value, the sequence is classified as
infeasible.

5 Experiments

We demonstrate our proposed framework on two different
tasks. Please also refer to the supplementary video that
demonstrates the planned motions both in simulation and
with a real robot.

For the first experiment, presented in Sec. 5.2, we consider
a typical kinematic pick and place TAMP problem where
two robot arms have to collaborate to solve the tasks. We
investigate the generalization capabilities of our approach to
more objects in the environment than during training.

In the second experiment (Sec. 5.3), we show that
the method can also be applied to tasks that involve
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dynamic models. More specifically, we demonstrate a tool-
use scenario where the robot has to use a hook-shaped object
to push and/or pull an object to a desired target location.

As a general remark, the quantitative results are visualized
using boxplots that show the median, the upper and lower
quartiles as well as whiskers. The whiskers in all boxplots
correspond to datapoints that are nearest to 1.5 times
the interquartile range (IQR). When we obtained time
measurements, we ensured to run them on the same machine
which did not compute anything else at the time. All
experiments in Sec. 5.2 that report run times have been
performed with an Intel Xeon W-2145 CPU @ 3.70GHz,
whereas in Sec. 5.3 with an Intel Xeon E5-2630v4 CPU @
2.20 GHz.

5.1

Both experiments share the same network architecture with
the same hyperparameters. The network is trained with the
ADAM optimizer (learning rate 0.0005) with a batch size of
48 for the pick and place experiment and 40 for the pushing
experiment. To account for the aforementioned imbalance in
the dataset, we oversample feasible action sequences such
that at least 16 out of the 48 samples in one batch come
from a feasible sequence for the pick and place experiment
(8 out of 40 for the pushing one). More specifically, 32 are
sampled without replacement from the whole dataset, while
the additional 16 (or 8) are solely sampled from the feasible
ones with replacement. We additionally weight the feasible
samples in the loss function with a weight of 2. Generally,
accounting for the imbalance with this oversampling turned
out to be crucial for the performance. However, there was no
extensive tuning of hyperparameters necessary at all.

The image encoder consists of three convolutional layers
with 5, 10, 10 channels, respectively, and filter size of 5x5.
The second and third convolutional layers have a stride of
2. After the convoultional layers, there is a fully connected
layer with an output feature size of 100 and linear activation.
The inner layers are followed with ReLU activations. The
same image encoder with shared weights is used to encode
the action images and the goal image. The discrete action
encoder is one fully connected layer with 100 neurons and
ReLU activations. The recurrent part consists of one layer
with 300 GRU cells, followed by a linear layer with output
size 1 and a sigmoid activation as output for 7 or linear
activation for 7. Except for the output, 7 and 7. have
the exact same architecture. Since the task is always to place
an object at or to push it to varying locations, we left out the
discrete goal encoder in the experiments presented here.

Network Details

5.2 Pick and Place Experiment

For the first experiment, we consider a tabletop scenario with
two robot arms (Franka Emika Panda) and multiple box-
shaped objects, see Fig. 1, 2a or 6 for typical scenes, in which
the goal is to move an object to different target locations. The
target locations are visualized by red squares in these figures.

5.2.1 Action Operators and Optimization Objectives The
logic language is defined by PDDL-like rules. For the
pick and place experiment, there are two action operators
grasp(R n O) and place (R O, Op).
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Figure 5. The four different integer assignments of the grasp
operator for the pick and place experiment. The gripper is
always aligned vertically to the box, but the integers determine
which of the side of the box the grippers are parallel to. Due to
kinematic limits, all these 4 ways have to be included.

T

The grasp action takes as parameters the robot arm
R € {left, right}, one of fourintegersn € {1,2,3,4}
and a (single) box-shaped object O € P(O(S)) that should
be grasped. A precondition ensures that O is an object.
The robot arm and integer assignment are represented in
the discrete action symbol a, leading to 8 different discrete
action symbols a for the grasp action. As discussed in
Sec. 4.3, the object O is encoded in the action-object image
I(0, S). See also Fig. 2 for a visualization of the action-
object images for the two action operators. The grasp
action imposes the following constraints on the phase of the
trajectory where it is active. The end-effector R is always
aligned vertically to the box. Depending on the integer,
the grippers are additionally aligned in parallel to different
surfaces of the box through two equality constraints.
Furthermore, an inequality constraint ensures that the center
point between the two grippers of the end-effector is inside
of the object with a margin. In this work, we only consider
grasps from the top, leading to four different discrete ways
of grasping a box from the top. Fig. 5 visualizes these four
discrete ways of grasping for one robot arm. One might think
that only two of the four grasps (the first and third from the
left in Fig. 5) are necessary for symmetry reasons. However,
due to kinematic limits of the robot arms, all four are indeed
required for this task. The coordinate system to define the
alignments is defined from a robot perspective, which avoids
symmetry issues of the box looking the same in the image
if rotated by, e.g., 180° and therefore uniquely defines each
discrete grasp type.

Note that the exact grasping location in two degrees of
freedom relative to the object is not defined completely by
the grasp action and therefore subject to the optimizer.
Handover motions are just two consecutive grasp actions,
for which the optimizer takes care of finding a suitable
handover pose, if a handover is feasible. As for example seen
in Fig. 1b, when an object should be grasped by only one
arm, then the optimizer grasps it in the middle of the object.
In contrast, for a handover, as seen in Fig. le, the fact that
there are two consecutive grasp actions on the same object in
the action sequence leads to the first grasp to happen near the
boundary of the box to allow the other arm to grasp the box
later during the handover as the second grasp. This capability
for generating handovers is another reason why 7 is not a
standard Q-function (see discussion in Sec. 4.5).

Finally, the grasp action imposes the constraint on the
relative velocity between the end-effector and the object to
be zero, modeling a stable grasp, during the time it is active.
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The place action has as parameters the robot arm
R € {left, right} as well as two objects O, and Oy,
(04, 0) € P(O(S)). The robot arm again is expressed in
the discrete action symbol a, i.e. there are two place action
symbols. The object O, on which O, should be placed
is encoded in the action-object image I((Og, Op), S). The
effects of the place action on the optimization objectives
are that the bottom surface of the object O, touches and is
parallel to Op. In our case, we have preconditions that O, is a
box and Oy is a table or the goal location (although this is not
strictly necessary). Similar to the grasp action, the place
action does not specify where exactly to place the object. It
is only specified that it should be placed somewhere on the
Oy. The optimizer then chooses a placement position that is
consistent with the other constraints imposed by the past and
future actions in the sequence, see for example Fig. 1c.

Preconditions for grasp and place ensure that one
robot arm attempts to grasp only one object simultaneously
and that an arm can only place an object if it is holding one.

Path costs ¢ penalize squared accelerations of the robot
joints of the path z. Finally, there are collisions and joint
limits as inequality constraints with no margin.

In total, |A| =10, i.e. there are 10 discrete actions
operator symbols. The number of objects and therefore the
search space over the action sequences or the size of the LGP
tree depends on the number of objects |O(S)] in the scene
(see also Tab. 1).

5.2.2 Properties of the Scene There are multiple
properties which make this (intuitively simple) task
challenging for task and motion planning algorithms. First of
all, the target location can fully or partially be occupied by
another object. Secondly, the object and/or the target location
can be out of reach for one of the robot arms. Hence, the
algorithm has to figure out which robot arm to use at which
phase of the plan and the two robot arms possibly have to
collaborate to solve the task. Thirdly, apart from position and
orientation, the objects vary in size, which also influences the
ability to reach or place an object. In addition, grasping box-
shaped objects introduces a combinatorics that is not handled
well by nonlinear trajectory optimization due to local minima
and also joint limits. Therefore, as described in the last
paragraph, we introduce integers as part of the discrete action
that influence the grasping geometry. This greatly increases
the branching factor of the task. For example, depending on
the size of the object, it has to be grasped differently or a
handover between the two arms is possible or not, which has
a significant influence on the feasibility of action sequences.

Indeed, Tab. 1 shows the number of action sequences with
a certain length that lead to a symbolic goal state over the
number of objects in the scene. This number corresponds to
candidate sequences for a feasible solution (the set T (g, .S))
which demonstrates the great combinatorial complexity of
the task, not only with respect to sequence length, but
also number of objects. Only a very small subset of
these candidate sequences actually correspond to a feasible
trajectory optimization problem, cf. Sec. 5.2.3. Furthermore,
it also shows that one cannot expect to generate a dataset
which covers the complete search tree for a single scene
configuration. This means that a dataset can neither contain a
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Table 1. Number of action sequences that lead to the symbolic
goal state over the length of the sequence for different numbers
of objects in the scene. These numbers correspond to the
number of candidate trajectory optimization problems that in the
worst case have to be solved. Only a very small subset of those
candidate sequences actually leads to a feasible NLP.

# of objects length of the action sequence

in the scene 2 3 4 5 6
1 8 32 192 1,024 5,632
2 8 96 704 6,400 51,200
3 8 160 1,216 15,872 145,920
4 8 224 1,728 29,440 289,792
5 8 288 2,240 47,104 482,816

dense coverage of the scene variation, nor all possible action
sequences for each individual scene.

One could argue that an occupied and reachability
predicate could be introduced in the logic to reduce the
branching of the tree. However, this requires a reasoning
engine which decides those predicates for a given scene,
which is not trivial for general cases. More importantly, both
reachability and occupation by another object is something
that is also dependent on the geometry of the object that
should be grasped or placed and hence not something that
can be precomputed in all cases (Driess et al. (2020b,
2019b)). For example, if the object that is occupying the
target location is small and the object that should be placed
there as well, then it can be placed directly, while a larger
object that should be placed requires to first remove the
occupying object. Our algorithm does not rely on such
non-general simplifications, but decides promising action
sequences based on the real relational geometry of the scene,
encoded in the action-object images and the goal image.

5.2.3 Training/Test Data Generation We generated
30,000 scenes randomly with two objects present at a time.
The sizes, positions and orientations of the objects as well
as the target location are sampled uniformly within a certain
range. In total, the parameter scene space is 14 dimensional.
See Fig. 6 for an example of a typical training scene. For
half of the scenes, one of the objects (not the one that is part
of the goal) is placed directly on the target, to ensure that at
least half of the scenes contain a situation where the target
location is occupied. The dataset Dgy, is determined by a
breadth-first search for each scene over the action sequences,
until either 4 solutions have been found or 1,000 leaf nodes
have been considered. In total, for 25,736 scenes at least
one solution was found, which were then the scenes chosen
to create the actual training dataset Dy, as described in
Sec. 4.2. 102,566 of the action sequences in Dyq, that reach
the symbolic goal were feasible, 2,741,573 completely
infeasible. This shows the claim of the introduction and
Sec. 5.2.2 that the majority, namely 96.4%, of the candidate
action sequences are actually infeasible. Furthermore, such
an imbalance between feasible and infeasible sequences
imposes difficulties for a learning algorithm. With the data
transformation from Sec. 4.2, there are 7,926,696 f; =0
and 1,803,684 f; =1 training targets in Diwgin, Which is
more balanced. Still, as mentioned in Sec. 5.1, oversampling
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Figure 6. Training scene example of pick and place
experiment. The sizes, positions, orientations of the two boxes
as well as the target location (red spot) are sampled randomly.
Here the green box should be placed on the red spot.

the feasible action sequences was necessary to ensure that
enough f; = 1 training targets are presented to the network.

To evaluate the performance and accuracy of our method,
we sampled 3000 scenes, again containing two objects each,
with the same algorithm as for the training data, but with
a different random seed. Using breadth-first search, we
determined 2705 feasible scenes, which serve as the actual
test scenes.

5.2.4 Performance — Results on Test Scenarios This
section presents the performance of our network when
integrated into the tree search algorithm to find solutions for
the 2705 test scenarios that contain two objects each.

Fig. 7 shows both the total runtime and the number of
NLPs that have to be solved to find a feasible solution.
When we report the total runtime, we refer to everything,
meaning capturing the image, computing the image/action
encodings, querying the neural network during the search
and the time for all involved NLPs that are solved. As one
can see in Fig. 7b, for all cases with sequence lengths of 2
and 3, the first predicted action sequence is feasible, such
that there is no search necessary and only one single NLP
has to be solved. For length 3, the median is still 1, but also
for sequences of lengths 5 and 6 in half of the cases less than
two NLPs have to be solved.

Generally, with a median runtime of about 2.3 s for even
sequence length of 6, the overall framework with the neural
network has a high performance and the task can be solved
in reasonable runtime. Furthermore, the upper whiskers are
also below 7 s.

Of the 2705 test scenes, in 35% of the cases the network
finds a solution with sequence length 2, in 18% of length 3,
in 27% of length 4, in 7% of length 5 and in 13% of length
6. Therefore, it is important that we report the runtimes and
the number of solved NLPs separated as a function of the
sequence length. Otherwise, the simpler cases of sequence
length 2 and 3, where there is a smaller combinatorial
complexity, would cover 53% of all test scenarios. This
allows us to show that also for the harder cases of sequence
length 5 and 6, which are only 20% of the test scenes, the
network performs well.

5.2.5 Comparison to Multi-Bound LGP Tree Search
Here we compare the performance of multi-bound LGP tree



14

Journal Title XX(X)

[\ w = ot (= ~
T

|

| _ T3 T T
o \ \ \ [
2 3 4 5 6

Action sequence length

Time (total solution time) [s]

(a) Total time to find a feasible solution

Number of solved NLPs
MW R Ul O N ™
T

| | | |
2 3 4 5

Action sequence length

(b) Number of NLPs that have to be solved to find a solution
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challenging tasks that require action sequence lengths of 5 and 6.
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(b) Speedup gained when using our proposed network over
multi-bound LGP tree search

Figure 8. Comparison of our framework with the neural network to multi-bound LGP tree search that relies on computing lower
bounds to guide the search. The speedup in (b) is the solution time with multi-bound LGP tree search divided by the solution time
with the neural network. Test scenes of pick and place experiment with two objects in the scene.

search that utilizes the lower bounds from Toussaint and
Lopes (2017) as heuristics to guide the search with our
proposed framework where the network acts as a heuristic
or ideally directly predicts a feasible action sequence.

In Fig. 8a the runtimes for solving the test cases with LGP
tree search are presented, which shows the difficulty of the
task. In 132 out of the 2,705 test cases, LGP tree search is
not able to find a solution within the timeout, compared to
only 3 times when we use our proposed framework with the
neural network.

Fig. 8b shows the speedup that is gained by using the
neural network. For sequence length 4, the network is 46
times faster, 100 times for length 5 and for length 6 even 705
times (median). In this plot, only those scenes where LGP
tree search and the neural network have found solutions with
the same sequence lengths are compared, which is the case
in 78% of the test scenes. This means that especially for the
hard cases, where it is most relevant, utilizing the network
also leads to a significant speedup.
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5.2.6 Comparison to Recurrent Classifier Fig. 9a shows
a comparison of our proposed goal-conditioned network
that generates sequences to the recurrent classifier described
in Sec. 4.7 that only predicts the feasibility of an action
sequence, independent from the task goal. As one can
see, while such a classifier also leads to a significant
speedup compared to LGP tree search, our goal-conditioned
network has an even higher speedup, which also stays
relatively constant with respect to increasing action sequence
lengths. Furthermore, with the classifier 22 solutions have
not been found, compared to 3 with our approach within
the timeout. While the network query time is neglectable
for our network, as can be seen in Fig. 9b, the time to
query the recurrent classifier becomes visible. Indeed, one
can see the exponential increase in the network query time
for increasing sequence lengths. This is caused by the fact
that without goal-conditioning, the network has to be queried
much more often, since it can only asses the feasibility of an
action sequence up to the point it has been queried without
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Figure 9. Comparison of recurrent classifier (orange) to our proposed goal-conditioned network (blue) for pick and place
experiment on test scenes with two objects in the scene. While the recurrent classifier is competitive compared to LGP tree search
(see Fig. 8a), one can see the exponential increase in the runtime for longer sequence lengths. In contrast, the runtime with our
proposed framework increases much less for longer sequence lengths.

the ability to judge whether it eventually leads to the goal.
Therefore, the speedup compared to LGP tree search with the
recurrent classifier is achieved by replacing the analytically
defined lower bounds which can, especially if the problem
is infeasible, take up to several seconds to compute, with a
learned model acting as a lower bound that is not only much
faster to evaluate, but also has a constant query time. The
goal conditioning of our proposed framework does not show
this exponential increase for longer sequence lengths, since
it directly guides the search towards achieving the goal.

5.2.7 Data Efficiency One could argue that the 25,736
scenes used for training are a high number of scenes for
this task. However, one also has to take into account that
the parameter space from which the scenes are sampled is
14 dimensional, which means that the training set does not
cover this space densely at all. Nevertheless, we trained our
proposed network on a subset of 4,442 and 8,090 scenes of
the original training dataset. In Fig. 10, we report the number
of solved NLPs to find a solution for the networks that are
trained on 4,442, 8,090 and 25,736 scenes, split over the
length of the found action sequence. As one can see, the
median is the same for all networks. For longer sequence
lengths of 5 and 6, the upper quartiles and the upper whiskers
for the networks trained on the smaller datasets increase.
Nevertheless, this experiment shows that with nearly 6 times
less data, one still achieves a high performance, which is also
still orders of magnitudes better than without the network.

5.2.8 Feasibility Threshold and Completeness In
Sec. 4.6, we have discussed how the network can be
integrated in the tree search algorithm without preventing
finding a solution if one exists even in case of prediction
errors of the network. This is achieved by adjusting the
feasibility threshold with a discounting factor v = 0.9 if
the network suggests to not consider a found leaf node
as a promising solution candidate. Another way to realize
this is to remove the feasibility threshold and just compute
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Figure 10. Investigation of the data efficiency. Number of
solved NLPs to find an overall feasible solution for the test
scenes with neural network integrated into the tree search
algorithm for networks trained on different numbers of training
scenes. Pick and place experiment. The median is the same for
all networks.

every NLP corresponding to a found leaf node. Here we
investigate the performance impact of these strategies.

Fig. 11 shows the total solution time to find a feasible
solution with the network when using the feasibility
threshold together with the adjustment of the threshold
(blue), which is our proposed approach, the case without the
adjustment (red), which implies that solutions can be missed
in case of prediction errors and the case where there is no
threshold at all (green).

As can be seen, the case without the threshold has
the highest runtime, whereas the case with the threshold
but no discounting has the lowest runtime. However, our
proposed approach with the threshold and the discounting
(blue) has only a non-significant difference to the case with
threshold but no discounting. Even without the threshold, the
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Figure 11. Performance on test scenarios depending on the
feasibility threshold strategy for pick and place experiment (two
objects in the scene) with neural network integrated into the tree
search algorithm. Blue is our proposed approach that combines
the advantages of using the feasibility threshold for performance
while maintaining completeness.

performance is also very good, although clearly worse than
with our proposed approach.

As we discussed in proposition 1, the approach with
adjusting the feasibility threshold guarantees that a solution
can be found if it exists. Indeed, in only 3 of the 2705 test
cases no solution was found with this method within the
timeout. The fact that this number is not zero is due to the
timeout. If we increase the timeout, then indeed a solution
for all test cases was found. The same holds true for the case
without the threshold, i.e. for the initial timeout 3 were not
found, then with the increased timeout all. However, even
if we increased the timeout, still in 5 test cases no solution
was found when using the threshold without the adjustment
mechanism.

For the networks that have been trained on a smaller
dataset (Sec. 5.2.7), adjusting the feasibility threshold turned
out to be even more important. Without the feasibility
adjustment, the network trained on 4,442 (8,090) scenes did
not find a solution in 30 (17) cases. In contrast, with the
feasibility adjustment, the networks trained on the smaller
datasets did not find a solution in only 2 (1) cases. When
increasing the timeout, always a solution was found in the
latter case.

To summarize, the feasibility threshold adjustment
presented in Sec. 4.6.1 maintains completeness, while
showing very little performance penalty.

The threshold in the experiments was fipesh = 0.5 and the
discounting v = 0.9.

5.2.9 Generalization to Multiple Objects Creating a
rich enough dataset containing combinations of different
numbers of objects is infeasible. Instead, we now take the
network that has been trained as described in Sec. 5.2.3
with only two objects present at a time and test whether
it generalizes to scenes with more than two (and also only
one) objects. The 200 test scenes are always the same, but
more and more objects are added. In Fig. 2a and 12, such
test scenes with 4 and 5 objects are shown.

Fig. 13 reports the total runtime to find a feasible solution
with our proposed neural network over the number of objects
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present in the scene. These runtimes include all scenes with
different action sequence lengths. In all cases a solution was
found. While the upper quartile increases, the median is not
significantly affected by the presence of multiple objects.

The observation that the runtime increases for more
objects is not only caused by the fact that the network
inevitable makes some mistakes and hence more NLPs have
to be solved. Solving (even a feasible) NLP with more
objects can take more time due to increased runtime costs
for collision queries and increased non-convexity of the
optimization landscape.

Generally, the performance is remarkable, especially when
observing that the network was able to find solutions for
scenes with many objects in a reasonable amount of time for
sequence length 6, where, according to Tab. 1, nearly half a
million possible action sequences for 5 objects in the scene
exist.

To further demonstrate the advantages of the network
when generalizing to multiple objects, in Fig. 14, we
compare the proposed approach to multi-bound LGP tree
search. We split the evaluation between scenes that have been
solved with action sequence lengths of 2 or 3 (Fig. 14a)
and 4, 5, or 6 (Fig. 14b). For the more challenging scenes
requiring sequence lengths 4, 5 or 6, the runtime is between
2 and 3 orders of magnitudes smaller with the network. Note
that the runtimes in Fig. 14 for LGP are only reported for
those where LGP was able to find a solution within the
timeout. As shown in Tab. 2, for the challenging scenes that
require action sequence length 6, if the scene contains 3
objects, then in only 6% of the cases the network was able to
find a solution within the timeout. If the scene contains 4 or 5
objects, then LGP without the network was not able to solve
a single scene within the timeout. Therefore, the runtime
results in Fig. 14b are in favor of LGP. As mentioned, with
our proposed approach, in all cases a solution was found.

These results emphasize that the capability of the network
to reason about which objects are relevant to solve the task
is crucial, even if only two objects have to be manipulated.
Therefore, the network shows important generalization
capabilities to multiple objects.

5.2.10 Generalization to More Objects to be Manipulated
and Longer Sequence Lengths In the last section, we have
shown that the network is able to generalize to more objects
in the scene than it has been trained on. In those scenes, it
was, however, sufficient to manipulate two objects to solve
the task, as in the training distribution. Since increasing
the number of objects in the scene increases the number
of candidate action sequences significantly, determining
the relevant objects is, as we have shown, an important
capability of the network to maintain high performance when
generalizing to multiple objects.

Going beyond that, the question arises if the network
is also useful in situations where more than two objects
have to be manipulated to solve the task. We do not expect
the network to generalize to these settings with the same
performance as in the other experiments.

In order to investigate this question, we generated 5 test
scenes where not only the goal is obstructed by an object,
but also the target object that should be placed on the goal
cannot be grasped directly since another object is placed in
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Figure 12. Example scenes for generalization to multiple objects (pick and place experiment). Object colors have no meaning.
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Table 2. Comparison between network and multi-bound LGP tree search for generalization experiment to multiple objects in the
scene. Percentage of solved scenes within the timeout depending on both the number of objects in the scene and the action
sequence length to solve the task. LGP is not able to find a solution within the timeout for challenging scenes with many objects and
long action sequence length. With the network, all scenes can be solved within the timeout.

# of objects
in the scene

length of the action sequence
2 3 4 5 6

multi-bound
LGP tree search
without network

100% 100% 100% 100% -
100% 100% 100%  88% 27%
100% 100% 100% 100% 6%
100% 100% 100% 100% 0%
100% 100% 100%  75% 0%

deep visual reasoning
TNN

N A W =W B W —

100 %

12 I
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Number of objects in the scene
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Figure 13. Generalization to multiple objects for pick and place
experiment with the proposed deep visual reasoning neural
network. During training, only and exactly two objects have
been present in the training scenes. Although the number of
candidate action sequences increases exponentially with more
objects in the scene (see Tab. 1), the runtime to find a feasible
solution with the neural network increases only slightly when
more objects are added.

a way that prevents grasping. See Fig. 15a for an example
scene. We call this experiment 1 in the following. This
means that all 3 objects have to be manipulated to solve
the task. Further, we generated 3 test scenes (cf. Fig. 15b
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for an example) where, more challenging, the objects are
placed in a way such that at least 8 discrete actions are
necessary due to the reachable set of the robot arms (and
hence they have to collaborate). We call this experiment 2
in the following. These numbers of test scenes are not as
statistically significant as the evaluations presented in the
other parts of this work. This is due to the fact that randomly
sampling scenes where three objects have to be manipulated
is unlikely given our data generation method. Therefore, we
created these test scenes manually, without any bias to their
solvability for the method.

Tab. 3 presents the runtimes for this generalization
experiment for all scenes individually. We increased the
timeout by a factor of 10 for this experiment compared to
the others. Out of the 5 scenes for experiment 1, in 4 cases
a solution was found using our network within the timeout.
LGP was also able to find a solution for these 4 cases.
Regarding experiment 2, in all 3 test scenes a solution was
found with our network, while LGP was not able to find a
solution for 2 of the 3 cases.

Although the network for these scenes cannot reduce the
number of optimization problems that have to be solved as
much as in the other experiments, in comparison with LGP,
the speedup between 10 and 932 is still remarkable and the
network makes it possible to solve some scenes at all. There
are scenes where the task could be solved in less than 10 s
with the network, but others can take in the order of hours.
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Figure 14. Comparison to multi-bound LGP tree search for the generalization to multiple objects experiment (pick and place
scenario). Plots show the total runtime to find a feasible solution, split over scenes that could be solved with an action sequence
length of 2 or 3 (Fig. 14a) and action sequence length 4, 5, or 6 (Fig. 14b). The results show that the increased number of
candidate action sequences for more objects in the scene (see Tab. 1) leads to significantly longer solution times for LGP. In
contrast, the runtime to find a feasible solution with the neural network increases only slightly when more objects are added.
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Figure 15. Generalization experiment where three objects have to be manipulated to solve the task, since not only grasping the
target object (yellow) is obstructed by another object, but also the goal location is occupied with yet another object. The training
distribution contained scenes with two objects only. Hence, only a maximum of two objects within an action sequence length of up
to 6 have to be manipulated. Therefore, for the scene in Fig. 15b, we ask for generalization in two ways beyond the training
distribution, namely three objects to be manipulated and longer sequence length.

Table 3. Runtime results for generalization experiment where three objects have to be manipulated to solve the task.

scene nN 7NN With bound LGP speedup LGP/mnn  speedup LGP /7nn with bound
1 8s 8s 1,913 s 239 238

min se 2 — not found —
len th(;' or 6 3 6s 6s 2,154 s 347 351
g 4 179 s 19s  17,750's 99 932
5 381s 211s 3,813 s 10 18
min se 6 14,121 s 3,326 s not found “00” “00”
leneth % 7 10,041 s 2,384 s not found “00” “00”
& 8 114 s 93s 1,182 s 10 13

Therefore, the network acts as a heuristic to speed up the
search, but does not eliminate it.

The column “myN with bound” is a slight variant of our
proposed algorithm where the bound P; (cf. Sec. 3.2) in line
5 of Algo. 1 is computed to check if a selected node from
the expand list is feasible according to bound P; (which
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checks mainly reachability of a single action). Including this
check into the other experiments of this work where we
evaluated the performance with the network did not make
any statistically meaningful difference, hence we have not
reported those results. However, in this case, where the
network is a less perfect heuristic, having this check in the
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algorithm can prevent the search from going into infeasible
parts of the LGP tree, leading to better performance.

5.2.11 Generalization to Cylinders Although the network
has been trained on box-shaped objects only, we investigate
if the same network can generalize to scenes which contain
other shapes like cylinders. Since the objects are encoded
in the image space, there is a chance that, as compared
to a feature space which depends on a less general
parameterization of the shape, this is possible. We generated
200 test scenes that either contain two cylinders, three
cylinders or a mixture of a box and a cylinder, all of different
sizes/positions/orientations and targets. If the goal is to place
a cylinder on the target, we made sure in the data generation
that the cylinder has an upper limit on its radius in order to be
graspable. These cylinders, however, have a relatively similar
appearance in the rasterized image as boxes. Therefore, the
scenes also contain cylinders which have larger radii such
that they have a clearly different appearance than what is
contained in the dataset. An example of such a scene can
be seen in Fig. 16. These larger cylinders can of course not
be grasped and hence are not placed on the target or are the
target itself. The network correctly does not attempt to grasp
these cylinders with too large radii.

Fig. 17a shows the total solution time with the neural
network. As one can see, there is no drop in performance
compared to box-shaped objects, which indicates that the
network is able to generalize to other shapes. For sequence
length 6, the runtimes are a bit higher, but are still very low,
especially compared to LGP tree search without the network.
In Fig. 17b, the number of NLPs that have to be solved show
that, except for sequence length 6, the median is 1 for all
other sequence lengths, which means that in the majority of
the cases, only a single optimization problem has to be solved
to find a feasible solution.

Please note that our constraints for the nonlinear trajectory
optimization problem are general enough to deal with boxes
and cylinders. However, one also has to state that for even
more general shapes the trajectory optimization for grasping
becomes a problem in its own (grasping can be considered as
an own subfield of robotics research).

Of the 200 test scenes, in 41% of the cases the network
finds a solution with sequence length 2, in 9% of length 3, in
30% of length 4, in 3% of length 5, and in 17% of length
6, which also shows that we have not artificially created
simple problems. Since for these cylinders no handovers are
possible, there are very few of sequence length 3 and 5.

5.2.12 Real Robot Experiments Fig. 1 shows our
complete framework in the real world. In this scene the
blue object occupies the goal location and the target object
(yellow) is out of reach for the robot arm that is be able to
place it on the goal. Since the yellow object is large enough,
the network proposed a handover solution (Fig. le). The
presence of an additional object (green) does not confuse
the predictions. Indeed, in all real world experiments, the
network always predicted a feasible action sequence directly.
The planned trajectories are executed open-loop, which
implies that, although all planned trajectories are feasible,
some executions fail. There were two main failure modes. On
the one hand if there was a handover, sometimes the grasp
was not stable enough and the box rotated a bit, such that
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Figure 16. Test scene with cylinders. During training, the
network has only seen box-shaped objects. The cylinder in the
middle has a large enough radius to have a clearly different
appearance in the image space than boxes. Pick and place
experiment.

the other robot arm then could not successfully grasp the
box. On the other hand, since there is no collision margin
in the trajectory optimization method, sometimes a planned
trajectory moves the gripper with a distance of only a few
millimeters to a box. Small errors in the perception pipeline
then could lead to unexpected movements of the boxes.
Note that the images as input to the neural network
are rendered from object models obtained by a perception
pipeline. This allows to transfer the trained network in
simulation to the real robot directly. The perception pipeline
is a simple background subtraction method in the depth
space to get object masks and then fitting box models to
the segmented pointclouds. One could argue that the fact
that we use rendered images from the object models for
the real robot experiments is a limitation of the proposed
approach compared to utilizing real images for the network
predictions. However, since the trajectory optimization needs
object models, there would be no advantage in the current
approach to use real images for the network prediction.

5.3 Pushing Experiment

In this experiment, we consider a scenario where objects
on a table should be moved to a desired goal configuration
(position and orientation on the table) with one robot arm.
Compared to the last experiment (Sec. 5.2), the objects are
too large to be grasped. Furthermore, they can be completely
out of reach of the robot. Therefore, the robot has to use a
hook-shaped tool to push and/or pull the object to the desired
location. See Fig. 19a or 18 for a typical example scene. The
goal pose in these scenes is visualized in transparent green.

5.3.1 Action Operators and Optimization Objectives The
equations of motion of the object that should be pushed is
taken from Toussaint et al. (2020), where it is modeled with
quasi-static dynamics based on the Newton-Euler equations
in the plane with friction. These equations of motion enter
the optimization problem in terms of equality constraints.

We define three action operators, grasp, pushSide (H
O v) and toGoal (O Oy).

A grasp action enables the robot to grasp the hook by
constraining the center point between the two grippers of
the end-effector to be inside of the hook with an inequality
constraint and a cost term that aligns the grippers parallel to
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Figure 17. Generalization to cylinders for pick and place experiment with neural network integrated into the tree search algorithm.
During training, the network has never seen cylinder-shaped objects. Test scenarios include one, two cylinders, or a mixture of
cylinder and a box. As can be seen in (b), except for sequence length 6, the median of the number of NLPs that have to be solved is
one, meaning the first predicted action sequence is feasible in the majority of the cylinder test cases, i.e. no search necessary.

the long side of the stick. The exact grasping location along
the stick is not defined by the grasp action and therefore
chosen by the optimizer. This action allows one degree of
freedom more than the grasp action from Sec. 5.2.1 the
optimizer has to fill in, since the hook has a cylindrical shape.
Since there is only one hook in this experiment, the grasp
action does not explicitly have a parameter. Accounting
for different hooks, however, would be a straightforward
extension.

The second action operator pushSide (H O v) models
force exchange between the hook and a side of an object.
The hook has two geometric features H € {H;, Ho} that can
be used for pushing, visualized as the two green balls in
Fig. 19a. The parameter O € P(O(S)) denotes the object
that should be pushed. Following Toussaint et al. (2020),
the pushSide action introduces multiple constraints and
regularization objectives to the optimization problem. Most
importantly, it introduces a six dimensional decision variable
(fpoa,Proa) € R® to the path optimization problem that
represents the total wrench exchange between the H part of
the hook and the object O in terms of a linear force fpoa €
R? (constrained to be positive) and the so-called point-of-
attack ppoa € R3 (PoA). Together, they define the wrench
(froa, froa X Proa) that enters the Newton-Euler equation
for O. Please refer to Toussaint et al. (2020) for details about
the POA mechanism.

As an important extension to Toussaint et al. (2020), where
the PoA is constrained to be anywhere on the surface of H
and O at the same time for contact interactions to happen,
we introduce the additional discrete parameter v for the
pushSide action. Let N'(O) = {v1,...,vn, }, vi C R? be
a decomposition of the surface N'(O) of O into n, < oo
many connected parts. In our case, we consider the vertical
faces of prism objects (boxes and triangular prisms). Then
the parameter v of the pushSide action constraints the
PoA to be on one of those faces, i.e. ppoa € v as an equality
constraint. This means that the choice of v indicates from
which side the object should be pushed.

Prepared using sagej.cls

While the PoA mechanism of Toussaint et al. (2020) in
principle can figure out from which side to push an object,
we found that without introducing v as a discrete decision,
the resulting NLP is prone to local optima and the robustness
of the optimizer finding a solution significantly drops due to
the non-convexity of the problem, especially with respect to
collision avoidance. The discrete variable v singulates local
optima and thereby greatly increases robustness of the solver.

The PoA allows to model both sliding and sticking
contacts. However, here we consider the sliding case only,
which means that an equality constraint is added that ensures
that the tangential component of the force on the surface
of O chosen by v is zero. A regularization term on the
relative sliding velocity of the PoA penalizes if the hook
slides over the surface of the object, which increases the
physical plausibility of the sliding contact assumption.

The two different parts {H;,Hs} of the hook that can
be used for pushing are represented in a, leading to two
different discrete action symbols for the pushSide action.
The object O that should be pushed as well as the pushing
side v is encoded in the action-object image. For O it is
a mask of the object, for v a mask of the surface, which
for the top down view as in this experiment leads to pixels
that represent an edge of the object. Fig. 19 visualizes these
action-object images.

Note that one could also represent those geometric
features of the stick in the image space (then the pushSide
action-object image would be a four channel image), but this
was not necessary for this experiment, since the hook was
always the same.

Finally, the toGoal (O O,) action simply models a
pose equality constraint between the object O and its desired
target pose O4. Both O and O, are encoded as masks in the
action-object image.

We consider a maximum of two consecutive pushes.
Therefore, in summary, if n, is the number of faces of
an object, then there are 2n, action sequences of length 3
and (2n,)? action sequences of length 4. The first action is
always a grasp of the hook.
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Figure 18. Example test scene of pushing experiment
containing a triangular prism as object. The green prism
visualizes the target location.

5.3.2 Training/Test Data Generation We sampled 10,000
scenes containing boxes of different sizes, positions and
orientations, as well as 10,000 scenes with triangular prisms,
again of different sizes, positions and orientations. Both
are combined into one dataset, leading to 20,000 scenes
in total, i.e. we train one network on both boxes and
triangular prisms. For the boxes, the scene parameter space
has dimension 8, for the triangular prisms 7.

Since for this experiment, the LGP tree is relatively small
(but still too large for satisfactory performance at test time),
we can actually compute all solutions within reasonable
time. Specifically, there are 72 action sequences for each box
scene and 42 for each triangular prism scene. 8 of the 72
for the box are action sequences of length 3, 64 of length
4. For the triangular prisms, 6 of length 3, 36 of length 4.
Therefore, the dataset contains the feasibility of all possible
action sequences of each sampled scene.

Representing the pushing actions in the image space
allows us to have the same input encoding for both the
triangular prisms and the boxes, although they have a
different number of faces.

For the test data, we generated 1000 scenes with the same
method, but a different random seed, 500 with boxes and 500
with triangular prisms. For the boxes, 462 scenes contained
at least one feasible solution, for the triangular prisms only
369, which then serve as the actual test scenes. In the test
dataset, 14.4% of the action sequences for the boxes are
feasible, 9% for the triangular prisms. Among those, 5.7%
(9%) are of length 3, 94.3% (91%) of length 4 for the boxes
(triangular prisms).

Note that for every feasible action sequence of length
3 there exists also a feasible one of length 4, namely
by pushing two times from the same side. This pushing
from the same side twice, however, can also be useful
to find a cost effective (or even feasible) solution, since,
due to the regularization cost term, sliding movements are
penalized when the contact between the tool and the object
is established. Two consecutive pushes from the same side
allow the robot to reposition the contact location without
creating large regularization costs.

5.3.3 Performance — Results on Test Scenarios In
Fig. 20, we visualize a typical sequence of motions for the
pushing scenario.
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Fig. 21 shows the number of NLPs that have to be solved
to find a feasible solution with the neural network for the
test scenarios. As one can see, for sequence length 3, for
both boxes and triangular prisms the network always finds
a feasible solution as its first prediction. For sequence length
4, the median of NLPs that have to be solved for boxes is
one, for triangular prisms the performance is slightly worse
with a median of 2, but still a high performance.

The network finds in 30% (23%) of the box (triangular
prism) test cases a solution with sequence length 3 and in
70% (77%) cases with sequence length 4.

For this evaluation, the network has been trained on
both boxes and triangular prisms. When we train separate
networks for the two different shapes and then evaluate
on only those different shapes separately, we do not see a
significant difference in the performance.

5.3.4 Comparison to LGP Tree Search Compared to
kinematic problems as considered in Sec. 5.2, it is less
clear how to define lower bounds that are useful for the
pushing scenario that contains dynamic models. Therefore,
we compare the performance to LGP tree search without
lower bounds, i.e. where directly the full path optimization
problem for a chosen action sequence is computed. When
we report the number of NLPs that have to be solved to find
a feasible solution with LGP in this section, we refer to the
expected value when randomly selecting action sequences,
which we can determine since, as mentioned in Sec. 5.3.2,
the search tree is small enough for us being able to check the
feasibility of all possible action sequences of the test scenes
for comparison.

As can be seen in Fig. 22, utilizing the network leads for
both the triangular prisms and the boxes to a great speedup
compared to randomly selecting action sequences. Note that
in Fig. 22b, LGP has an expected value of exactly 6 for
sequence length 3, since for all triangular prisms in the test
scenes only a single of the 6 possible action sequences each
was feasible.

5.3.5 Generalization to other Shapes The network is
trained on box-shaped objects and triangular prisms. Our
proposed image based representation for expressing the sides
from which the object should be pushed and the desired
goal pose allow in principle also other shapes as input to
the neural network. Even if there are more push-faces, the
algorithm can directly handle this. We therefore tested if
the network can generalize with good performance to other
shapes than boxes and triangular prisms, in this case penta
prisms.

In order to do so, we generated 200 test scenes that contain
penta prisms of different sizes, positions and orientations
as well as different goal poses. See Fig. 23 for an example
test scene. For penta prisms, there are 110 different action
sequences up to length 4 (10 of length 3, 100 of length
4). By solving the NLPs corresponding to all 110 different
action sequences, we obtained 188 feasible scenes, which
then are the test scenes for this experiment. 13.7% of the
action sequences are feasible, among which 3.5% are of
length 3 and 96.5% of length 4.

Fig. 24a reports the number of solved NLPs to find a
feasible solution. This figure also contains a comparison to
the expected value with LGP. As one can see, the network
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Figure 19. Visualization of the action-object image encodings (O, S) for an example test scene (a) of the pushing experiment. In
all images, the first channel is a depth channel of the scene. The images always refer to the initial scene configuration (a). The push
side masks in (b) and (c) represent the side of the object as an edge mask where the robot should push.
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Figure 20. Typical sequence of motions for the pushing experiment. The gray box should be moved to the green goal location. The
network directly predicts a feasible action sequence consisting of two pushes from different sides of the object with different parts
(H1 and He, indicated by the green balls) of the hook. Action sequence length is 4.

literally just generalizes to penta prisms, although during
training the network only has seen boxes and triangular
prisms. The performance is identical to the performance
of solving scenes containing boxes (see Fig. 21), which is
remarkable. For sequence length 3, in all cases the first
predicted sequence was feasible, for sequence length 4 the
median was 1, the upper whisker 3. Further, in all of the
188 test scenes a solution was found. However, it also has
to be noted that the optimizer has full access to the shape
of the penta prism. Nevertheless, the network is capable
of predicting the push sequence and from which side with
high performance for penta prisms, which clearly are not
contained in the dataset.
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Additionally, we tested if a network that was trained only
on boxes, i.e. no triangular prisms, can also generalize to
penta prisms. As can be seen in Fig. 24b, although the
performance is slightly worse for sequence length 4 (median
2 compared to 1 and upper whisker 6 compared to 3), it still
generalizes.

5.3.6 Completeness and Feasibility Threshold In Tab. 4
we report the number of test scenes where the network
could not find a solution for different feasibility threshold
strategies. According to proposition 1, when using the feasi-
bility threshold together with the discounting adjustment (see
Sec. 4.6.1), prediction errors of the network cannot prevent
finding a feasible solution if it exists. Indeed, as can be seen
in the first row of Tab. 4, in all test scenarios, the adjustment
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Figure 21. Performance on test scenes for pushing experiment
with our proposed neural network. The network was trained on
both boxes and triangular prisms.

Table 4. Number of test scenes (pushing experiment) for which
no solution was found with the network for different feasibility
threshold strategies. The first row with finesh = 0.5 and v = 0.9
is our proposed framework that has completeness guarantees
and hence always find a solution if it exists.

boxes tr1apgular p§nta
prisms prisms
fthresh =0.5
§ =09 0 0 0
firesh = 0.5 20 (4%) T8 21%) 28 (15%)
Jowesh =0.1  8(2%)  19(5%)  5(3%)
no fthresh 0 0 0

mechanism of the threshold enables the network to not miss
a single solution. This holds true for testing on both boxes
and triangular prisms as in the training set, but also for
penta prisms which shape the network has never seen during
training.

In comparison, if only the feasibility threshold fipesn =
0.5 is used without the adjustment mechanism, for some
(up to 21% for the triangular prism or 15% for the penta
prism) test scenes, the network prevented finding a solution
by classifying feasible solutions as infeasible. Even when
reducing the threshold to fiyesn = 0.1, still some feasible test
scenes are classified infeasible and hence not solved. Only if
the threshold is removed completely, again all scenes can be
solved. This, however, comes with a performance penalty.

5.3.7 Cost Prediction In Sec. 4.8, we propose how the
framework cannot only be used to find feasible solutions,
but also to take the trajectory costs into account. This
section analyzes both the performance of the cost prediction
network to find a feasible solution and compares if lower cost
solutions can be found.

First of all, the performance in terms of the number of
NLPs that have to be solved to find a feasible solution
is exactly the same as with the feasibility network (the
performance boxplot is identical to Fig. 21 and therefore not
shown again) and also for every feasible scene a solution was
found.
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In addition, utilizing the cost prediction network, in 78.6%
of the test scenarios with boxes and 88.1% with triangular
prisms the first found solution had a lower cost than with the
feasibility prediction network.

For the pick and place experiment of Sec. 5.2, it is
intractable to compute all possible action sequences to find
the cost optimal one. Since for this scenario we can actually
compute the costs for all sequences, we can investigate how
close the first found solution utilizing the cost prediction
network is to the real lowest cost over all possible action
sequences. Fig. 25a and Fig. 25b show this for the box and
triangular prism test scenarios, respectively. These figures
report the cost achieved with the network divided by the
optimal cost. This means that a value of 1 corresponds to
the case where the cost optimal solution was found as the
first prediction, a value of 2 corresponds to the case where
the found cost was twice as high as the optimal one etc.

One can clearly see that by utilizing the cost prediction
network one can achieve considerably lower costs with the
first prediction compared to performing feasibility prediction
only. The median for the boxes is very close to 1 and for the
triangular prisms the median is 1, i.e. in half of the cases the
first found solution was the cost optimal one.

6 Discussion

Sequential manipulation problems as considered with TAMP
approaches are difficult for several reasons. First of all,
the sequential nature not only implies a huge combinatorial
complexity of possible high-level action sequences, but also
challenging non-convex motion planning problems, where
multiple constraints at different phases of the motion have to
be coordinated globally (Dantam et al. (2018); Orthey et al.
(2020); Garrett et al. (2020); Xu et al. (2020); Driess et al.
(2019a)). For example, the hook has to be grasped in a certain
way in order for it to be possible to push the object to an
intermediate position from which the final push to the goal
can then be executed.

LGP is one approach to address this by introducing
discrete variables that are subject to logic rules to make the
trajectory optimization for sequential manipulation problems
more tractable, while retaining the property of being able
to coordinate the motions in the different phases of the
trajectory with global consistency. This, however, implies
a combinatorial complexity, significantly increasing the
computation time to find a solution, since many, mostly
infeasible optimization problems have to be solved.

A key property of TAMP algorithms is that they
show remarkable generalization capabilities with respect
to different scenes with many and different numbers of
objects, changing geometries etc. This is another reason why
sequential manipulation problems are hard, since the variety
of tasks in different scenes demands strongly generalizing
algorithms. From a learning point of view, it is challenging to
create datasets that cover such a variety of scene parameters
and goals.

We make essential contributions in several of those
regards. First, we address the combinatorial complexity that
is introduced through the discrete variables by learning a
goal conditioned network that guides the search over the
discrete variables in a way that most of the time the search
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Figure 22. Comparison of LGP to our proposed neural network on test scenes for pushing experiment. The network was trained on
both boxes and triangular prisms. In (b) the second median line from the left corresponds to LGP.

Figure 23. Generalization to other shapes. Example test scene
of pushing experiment containing a penta prism. During training
the network has only seen boxes and triangular prisms.

is eliminated, leading to large speedups in solution times.
Further, we demonstrated our method not only on a single
problem instance, but on a variety of scenes, including
different object parameters, goals, but especially increasing
numbers of objects, although only a fixed number of objects
was present in the training set. Moreover, our proposed
image representation enables generalization to different
shapes of objects than those present in the training data.

The generalization to more objects than during training is
a major advantage of the image-based encoding of the scene
we proposed compared to a fixed feature representation.
As shown in Sec. 5.2.9, the network is able to maintain
high performance if more objects are added to the scene.
However, one also has to state that this kind of generalization
to multiple objects has to be understood in the sense that
the network correctly chooses up to two objects which have
to be manipulated (multiple times) to solve the task. The
network realizes a kind of attention mechanism, operating on
only the relevant parts of the environment. This could also
be observed in the generalization experiment to cylinders
(Sec. 5.2.11), where the network does not attempt to grasp
cylinders which are too large, although it has never seen
cylinder shaped objects during training. Being able to
identify which objects are relevant to solve the task is
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crucially important and the reason for why the network can
find solutions quickly even in scenarios where there are
nearly half a million candidate action sequences, cf. Tab. 1
and Fig. 13. We believe that such an attention mechanism
is the key to tackle even more realistic environments with
far greater combinatorial complexities like in household
scenarios.

Although we do not expect the network to generalize with
high accuracy to scenarios where more than two objects have
to be manipulated in order to solve the task without a broader
training distribution, we have investigated in Sec. 5.2.10 and
Tab. 3 that for scenes where 3 objects have to be manipulated
with action sequence length up to 8 (training distribution
has a maximum sequence length of 6 and contains only two
objects), the network still leads to a speedup in finding a
solution up to several orders of magnitudes compared to
LGP without the network. However, in this case, the network
acts as a heuristic that does not eliminate search, since more
optimization problems had to be solved to find a feasible
solution compared to the scenarios where only 2 objects in
the scene have to be manipulated.

Our approach assumes that we are able to extract
segmentation masks of each object from the raw image of
the initial scene. Many methods like Mask R-CNN (He
et al. (2017)) have been developed for object segmentation.
While definitively challenging, we believe that the ability
to segment objects in an image is a necessary condition
for many robot applications that rely on perception
in uncontrolled environments and hence a reasonable
assumption to make. In particular, without being able to
detect objects, defining the TAMP problem in the first place
is unclear. There are also recent approaches that estimate
the state of the symbolic domain from image segmentations
(Kase et al. (2020); Zhu et al. (2020); Mukherjee et al.
(2020)).

As already mentioned in Sec. 5.2.12, while the generation
of the discrete action sequences only relies on images and
these object segmentations, the trajectory optimization still
requires object models in terms of their shapes and poses.
Hence, a perception pipeline is required to extract these
properties from the raw image observations. Future work
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could investigate how to make the motion generation given a
discrete action sequence less reliant on exact object models
(Driess et al. (2021a,b); Simeonov et al. (2020); Manuelli
et al. (2019); Qin et al. (2019); Wang et al. (2020); Suh and
Tedrake (2020)).

Despite, we have shown that the image representation
has advantages (generalization to multiple objects/shapes,
encoding geometry information) independently from
whether object models are known or not. This means that
one way to interpret the images in this work is not solving
manipulation from raw perception, but a flexible state/action
representation for long-horizon reasoning. Still, we believe
that this representation is also one step to connect TAMP
more closely to real perception.

One of the main limitations of this work, in our opinion,
is that the initial scene image has to contain all information
that is necessary to reason about the action sequence.

Therefore, we have focused on tabletop manipulation
scenarios, since, in this case, the assumption that the
image contains sufficient information about the scene/task
is reasonable for the considered tasks. Total occlusions, for
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example if an object is inside a cabinet, cannot be handled
with the current approach. Partial occlusions, as long as the
image still contains sufficient information, can in principle
work. In a scenario where objects are stacked on top of
each other in the initial scene, the top-down camera view
as considered here is insufficient, but could be replaced
with an angled view. As long as object masks and the
image are provided in such a way that still the relevant
object geometries can be inferred, we expect the method
to work just as well. In mobile manipulation setups, the
proposed methodology would not be applicable for solving
the whole problem, because it is unrealistic to assume that
a single image contains all necessary information. However,
we believe that the ideas of this work could also be useful
for solving parts of the manipulation problem (subgoals)
quickly and repeatedly in an online setup. Most existing
TAMP approaches assume full knowledge about the initial
state, even in mobile manipulation settings. Only recent work
starts to address these issues by belief-space planning in
the context of TAMP (Garrett et al. (2019); Phiquepal and
Toussaint (2019)).
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Figure 26. Goal region (green) is only partially occluded by the
blue object, such that the yellow object can be placed on the
goal without removing the blue object first. The network find this
as its first proposed solution.

Generally, a major strength of the LGP formulation is that
the actions imply constraints that only partially determine
the behavior of the trajectory. The overall trajectory is then
optimized with global consistency, filling in the remaining
degrees of freedoms, or action parameters as they are called
in other TAMP approaches. This property of LGP allows
us, for example, to efficiently generate handover motions
or removing of obstacles without explicitly needing to
enumerate handover poses or the placement positions of
the occupying obstacle. However, scaling to significantly
longer action sequence lengths, it becomes clear that it is
neither necessary nor feasible to optimize trajectories with
complete global consistency. Introducing further hierarchies
(Kaelbling and Lozano-Pérez (2011)) or breaking the
manipulation down into (less dependent) subgoals (Driess
et al. (2019a); Hartmann et al. (2020, 2021)) becomes
necessary.

Instead of a black-box reward function, we specify the
manipulation planning goal in terms of object masks similar
to the action-object images. This goal-object image contains
both the mask of the target object and the goal, as well as a
channel of the whole scene. Therefore, the goal specification
can encode the target object, the goal and other objects in
the scene in such a way to take their geometric relations
into account. Fig. 26 shows a scenario where the goal is
only partially occluded by the blue object. In this case, the
network is able to realize that the yellow object can be placed
on the green goal region without removing the blue object
first and proposes this as the first solution. For a stacking
scenario, one could think of having multiple object masks
as part of the goal specification to encode which objects
should be stacked. However, such goal specifications assume
that masks of the unobstructed goal region for the pick-and-
place experiment and the mask of the desired target pose for
the pushing experiment can be generated. Investigating other
goal specifications is an important topic for future research.

For showing completeness of our framework (proposition
1), we assumed (assumption 1) that the nonlinear trajectory
optimizer numerically converges to a feasible solution if
the problem is indeed theoretically feasible. While such
assumptions usually only hold for convex problems and
our trajectory optimization problems are, even for a fixed
action sequence, non-convex, we empirically found that
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the optimizer converges reliably. The introduction of the
additional discrete decisions for the pushing scenario was
important for this robustness.

We considered boxes, cylinders, triangular, and penta
prisms, all of different sizes, in this work. While we
argue that an advantage of the input images is their
principal capability of representing and generalizing to
different shapes, we assumed that the underlying trajectory
optimization method can handle those shapes. In order to
achieve this, the paradigm of this work is to introduce a set
of discrete decisions for each subtask (grasping, pushing,
placing). These decisions can (not strictly) be understood
as a means to enumerate local optima such that, given
the discrete decisions, the optimizer is then able to find
the remaining degrees of freedom for global consistency
robustly. In the case of grasping, those decisions enumerate
graspings from different sides of the object. For pushing,
they specify the side from which the object should be
pushed. In principle, one could think of introducing more
such discrete decisions to deal with a greater variety of
shapes. However, generalizing this idea to arbitrary shapes
is not directly straight-forward for multiple reasons. On the
one hand, it becomes less clear how to define constraints
realizing the subtasks for arbitrary shapes in a way that, in
the paradigm of this work, benefits from parameterizing them
with discrete decisions to make trajectory optimization with
those constraints tractable. On the other hand, if too many
discrete decisions are introduced, then the branching factor
of the LGP tree increases significantly. This might not only
lead to a harder learning problem, but it also becomes more
challenging to generate data containing enough feasible
action sequences in a reasonable amount of computation
time. As illustrated in Fig. 5, we considered 4 different
graspings from above the object. In our previous work
(Driess et al. (2020b)), we have shown for a single action
that the feasibility of not only top-, but additionally also side-
grasps can be predicted from a similar input representation as
in the present work. We anticipate that our network would in
principle be able to take side grasps into account as well. In
order to address the data generation problem in this case due
to an increased branching factor, bootstrapping the learned
network for data generation would be one way. We believe
that integrating grasping of complex objects within long-
horizon tasks where the way an early grasp is executed has
to be coupled with later phases of the motion is an important
future research topic.

7 Conclusion

In this work, we proposed a neural network that learns to
predict promising discrete action sequences for sequential
manipulation problems from an initial scene image and the
task goal as input. In most cases, the first sequence generated
by the network was feasible. Hence, despite the fact that the
network can act as a search heuristic, there was very little
search over the discrete decisions required and consequently
often only one trajectory optimization problem had to be
solved to find a solution to the TAMP problem.

Although being trained on only two objects present at a
time, the learned representation of the network enabled to
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generalize to scenes with multiple objects and other shapes
while still showing a high performance.

We showed that the approach can be applied not only to
kinematic pick and place problems as typical in TAMP, but
also to a scenario where an object has to be pushed with a
tool to a desired target location. Here one can see another
advantage of the image representation, since the network
generalized to other shapes than during training.

A main assumption and therefore main limitation of the
proposed method is that the initial scene image has to contain
sufficient information to solve the task, which means that
there should be no total occlusions or other ambiguities.
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