
Sparse Multilevel Roadmaps
for High-Dimensional Robotic Motion Planning

Andreas Orthey1 and Marc Toussaint1,2

Fig. 1: We generalize sparse roadmaps to fiber bundles. Here, we demonstrate this idea on the Torus T 2 = S1 × S1 with
S1 being the circle. Left: Dense roadmap using probabilistic roadmap planner [12]. Middle: Sparse roadmap using sparse
roadmap spanner [3]. Right: Sparse multilevel roadmap on fiber bundle T 2 → S1 using our algorithm (SMLR), which
restricts sampling based on information from the lower-dimensional space S1.

Abstract— Sparse roadmaps are important to compactly
represent state spaces, to determine problems to be infeasible
and to terminate in finite time. However, sparse roadmaps do
not scale well to high-dimensional planning problems. In prior
work, we showed improved planning performance on high-
dimensional planning problems by using multilevel abstractions
to simplify state spaces. In this work, we generalize sparse
roadmaps to multilevel abstractions by developing a novel
algorithm, the sparse multilevel roadmap planner (SMLR). To
this end, we represent multilevel abstractions using the language
of fiber bundles, and generalize sparse roadmap planners by
using the concept of restriction sampling with visibility regions.
We argue SMLR to be probabilistically complete and asymp-
totically near-optimal by inheritance from sparse roadmap
planners. In evaluations, we outperform sparse roadmap plan-
ners on challenging planning problems, in particular problems
which are high-dimensional, contain narrow passages or are
infeasible. We thereby demonstrate sparse multilevel roadmaps
as an efficient tool for feasible and infeasible high-dimensional
planning problems.

I. INTRODUCTION

Sparse roadmaps [3] are essential in motion planning tasks
to reduce model complexity and terminate motion planning
in finite time, thereby providing (probabilistic) infeasibility
proofs. Such infeasibility proofs are essential if we like to
use a motion planner as building block for larger action
skeletons [11] or symbolic planning systems [37]. However,

1Max Planck Institute for Intelligent Systems, Stuttgart, Germany. Marc
Toussaint thanks the MPI-IS for the Max Planck Fellowship.

2Technical University of Berlin, Berlin, Germany
{aorthey}@is.mpg.de, {toussaint}@tu-berlin.de

sparse roadmaps often operate on the full state space of the
robot(s), thereby taking too much time to converge—making
them often inapplicable for higher-dimensional systems.

To address this problem, we propose to use sparse
roadmaps [3] in conjunction with multilevel abstractions of
the state space [22]. By exploiting multilevel abstractions—
which we model using fiber bundles [35]—we can often
terminate the algorithm significantly faster than state-of-the-
art sparse roadmap planners operating on the full state space.

While multi-resolution roadmaps exists [7], [30], we are
not aware of any algorithm to compute sparse roadmaps over
multilevel abstractions. We therefore believe to be the first
to combine both concepts into one concise algorithm. Let us
summarize our contributions as follows.

1) We present the Sparse MultiLevel Roadmap planner
(SMLR), which generalizes sparse roadmaps [3] to
efficiently exploit fiber bundle structures [22]

2) We evaluate SMLR on eight challenging feasible and
infeasible motion planning problems involving high-
dimensional state spaces up to 34-degrees of freedom
(dof)

II. RELATED WORK

We review two aspects of (sampling-based) motion plan-
ning [15]. First, we discuss multilevel motion planning,
where we plan over multiple levels of abstraction. Second,
we discuss sparse roadmaps on general state spaces. We will
investigate both topics in detail in Sec. III.

A. Multilevel Motion Planning

To efficiently solve high-dimensional motion planning
problems, we can use the framework of multilevel motion
planning [5], [32], [27], [38], [22], where (admissible) lower-
dimensional projections are used to simplify the state space
of a robot. We can construct multilevel abstractions either
manually [26], [24] or learn them from data [8], [2]. Our
approach is complementary, in that we assume a multilevel
abstraction to be given and we concentrate on computing
sparse roadmaps over those abstractions.

Once we fix a multilevel abstraction, we can utilize clas-
sical motion planning algorithms to exploit them. A popular
choice is the rapidly-exploring random tree algorithm [14],
which we can generalize to selectively grow samples towards
regions informed by lower-dimensional abstractions [8], [24]
or workspace information [28]. While algorithms often show
speed-ups of two to three orders of magnitude [28], [36], they
usually lack guarantees on asymptotic optimality [12]. There
are, however, two planner which provide those guarantees.
First, the quotient-space roadmap planner (QMP*) [22],
[23], which generalizes the probabilistic roadmap planner
(PRM*) [12]. Second, the hierarchical bi-directional fast
marching tree (HBFMT*) [26], [27], which generalizes the
fast marching trees algorithm (FMT*) [10]. While both
guarantee asymptotic optimality [22], [27], they support,
however, either only euclidean spaces [27] or rely on dense
roadmaps [22]. Our approach differs significantly, in that
we are the first to compute sparse roadmaps over gen-
eral multilevel abstractions—while providing guarantees on
asymptotic near-optimality.

B. Sparse Roadmaps

The history of sparse roadmaps essentially begins with the
pioneering work by Siméon et al. [33], who were the first
to prune states based on visibility regions. With visibility
regions, we try to find a minimal set of states from which
the full state space is visible, similar to the concept of
guards in the art gallery problem [21]. However, visibility
roadmaps often sacrifice on path quality. As remedies, we
could introduce cycles [31], [20] or use edge visibility [9]
to improve path quality.

While cycles and edge visibility can improve path quality,
there are no guarantees on optimality. This changed with the
advent of near-optimal sparse roadmaps [17]. Using dense
asymptotic optimal roadmaps [12], we can use graph span-
ners to sparsify a dense roadmaps while providing guarantees
on path quality. We can achieve this by either removing
edges [17], [39] or edges and vertices [29]. Computing dense
roadmaps before sparsification is, however, computationally
expensive. Later work introduces incremental sparse graph
spanners, with which we can remove dependence on dense
roadmaps altogether [3]. Our work is complementary to
sparse graph spanners, in that we also use incremental sparse
graph spanners [3]. We differ, however, in building not one,
but multiple sparse roadmaps on different abstraction levels.

When using sparse roadmaps, we often face the problem
of explicitly defining a visibility or connection radius to

define the sparseness of the graph. To handle this trade-
off between optimality and efficiency, we can often create
multi-resolution roadmaps [4]. Multi-resolution roadmaps
are sets of roadmaps which differ in how sparse they are.
To vary roadmap sparsity, we could change the connection
radius [30] or we can selectively remove edges, either evenly
distributed [7] or based on a reliability criterion [19]. To
exploit those multi-resolution roadmaps, we could plan on
the highest resolution roadmap and selectively refine the
roadmap whenever we hit an obstacle [30]. Such a strategy is
efficient, because solutions on sparser roadmaps act as admis-
sible heuristics for planning [1], [4]. While multi-resolution
roadmaps exist on the same state space, our approach is
complementary, in that we create sparse multilevel roadmaps
on different state spaces, whereby each state space represents
a relaxed planning problem.

III. BACKGROUND

We develop an algorithm which grows sparse roadmaps
over fiber bundles to efficiently exploit high-dimensional
planning problems. As background for this task, we review
the topics of optimal motion planning, multilevel abstractions
(modelled using fiber bundles) and sparse roadmaps.

A. Optimal Motion Planning

Let X be an n-dimensional state space and let xI and xG
be two states in X which we call the initial and the goal
state. To each state space, we associate a metric function
d : X ×X → R and a constraint function φ : X → {0, 1}
which evaluates to zero if a state is feasible and to one
otherwise. The state space thus splits into two components,
the constraint-free subspace Xfree = {x ∈ X | φ(x) = 0}
and its complement. We define the optimal motion planning
problem as the tuple A = (Xfree, xI , xG, J), which requires
us to design an algorithm to find a continuous path from
xI to xG while (1) staying exclusively inside Xfree and (2)
minimizing the cost functional J which maps paths in Xfree
to real numbers.

We define a motion planning algorithm (a planner) as a
mapping from A to a path through Xfree. A planner can have
different desirable properties. First, we like a planner to be
probabilistically complete, meaning the probability of finding
a solution path if one exists approaches one as time goes
to infinity. Second, we like a planner to be asymptotically
near-optimal, meaning the probability of finding a path is
at least ε worse than the optimal solution path (under cost
functional J). Third, we like a planner to be asymptotically
sparse, meaning the probability of adding new nodes and
edges converges to zero if time goes to infinity [3].

B. Multilevel Motion Planning

Because state spaces are often too high-dimensional to
plan in, we use multilevel abstractions which we model
using fiber bundles [35], [16]. A fiber bundle is a tuple
(X,B,F, π), consisting of a bundle space X , a base space
B, a fiber space F and a projection mapping π from X
to B. We assume that both state space and base space

(a) Fiber over base point. (b) Path restriction over base path. (c) Graph restriction over sparse base graph.

Fig. 2: Fiber bundle restrictions on the fiber bundle T 2 → S1 with T 2 being the torus and S1 being the circle. See text for
clarification.

have associated constraint functions φ and φB and that
the projection mapping π is admissible w.r.t. the constraint
functions, i.e. φB(π(x)) ≤ φ(x) for any x in X [24].
The admissibility condition ensures that we preserve feasible
solution paths under projection. While we exclusively use
product spaces in this work, we model them using fiber
bundles since they provide a useful vocabulary (restrictions
and sections) and since they are required for extensions to
task-space projections.

Our approach uses the following three concepts. First, we
define fibers over a base element b in B as F (b) = {x ∈ X |
π(x) = b}, which is the set of points in X projecting onto
b. Please see Fig. 2a for an example of a fiber on the torus
T 2 = S1×S1 with base space S1. We additionally define the
method LIFT : B×F → X , which takes a base element b and
a fiber element f in F (b) to the bundle space. In the case of
product spaces, we can define LIFT(b, f) = (b, f). Second,
we define path restrictions over a base path p : I → B as
r(p) = {x ∈ X | π(x) ∈ p[I]}, whereby I is the unit interval
and p[I] is the image of the base path in B. Please see Fig.
2b. Third, we define graph restrictions over a graph GB =
(VB , EB) on B as r(GB) = {x ∈ X | π(x) ∈ e[I], e ∈ EB}
whereby VB are vertices in B, EB is the set of edges in B
and e[I] is the image of an edge on the base space. Fig.
2c provides a visualization of a graph restriction (individual
edge restrictions have different distances from torus for better
visualization). For more details, please see [22] or [35].

C. Sparse Roadmaps
To grow a sparse roadmap, we use the algorithm by Dob-

son and Bekris [3]. The sparse roadmap planner is similar to
probabilistic roadmaps [13], [12], but uses a visibility region
δ, which consists of all feasible states in the hypersphere of
radius δ around a state, to prune samples. To implement the
pruning step, we add a new feasible sample if and only if it
fulfills a sparseness condition.

The sparseness condition consists of four elementary tests
[3]. First, we test for coverage, meaning we add the sample

if it does not lie in the visibility region of any sample in the
graph. Second, we test for connectivity, meaning we add the
sample, if it lies in multiple visibility regions, which belong
to disconnected components of the sparse graph. Third, we
test for interfaces, meaning we add the sample, if it lies in
multiple visibility regions, which are not yet connected by an
edge. Fourth and finally, we test for shortcuts, meaning we
add the sample, if it provides proof of a shorter path through
the free state space. We terminate the algorithm, if we either
find a feasible path or if we fail M consecutive times to add
a sample to the sparse roadmap. For more details please see
[3].

The sparse roadmap planner is probabilistically complete
and asymptotically near-optimality [3] and depends on the
following parameters. First, the visibility region δ, which
is usually a fraction of the measure of the state space.
Second, the maximum number of consecutive failures M .
M is important in the analysis of the algorithm, because it
provides a probabilistic estimation of the free state space
covered, which is defined as the percentage 1− 1

M [34]. As
an example, if we stop with M = 100, our probabilistic
estimate of the free state space covered is 99%. Finally, we
have an additional parameter for testing for shortcuts, which
provides a trade-off between optimality and efficiency [3].

IV. SPARSE MULTILEVEL ROADMAPS

Let (xI , xG, X1, . . . , XK) be a fiber bundle sequence
with xI and xG being start and goal state. Our task is to
generalize the sparse roadmap planner [3] to fiber bundle
sequences by growing K graphs (G1, . . . , GK) on the bundle
spaces (X1, . . . , XK), whereby we grow the k-th graph using
restriction sampling [22] of the (k−1)-th graph. We call our
algorithm the sparse multilevel roadmap planner (SMLR).
SMLR depends on three parameters, the two parameters δ
and M from sparse roadmaps, and the additional parameter
η, which we detail later.

We show the algorithm in Alg. 1. We start to create
a priority queue (Line 1.1), which orders bundle spaces

Algorithm 1 SMLR(xI , xG, X1, . . . , XK)

1: Let X be a PRIORITY QUEUE . Top is Max Value
2: for Xcur in X1, . . . , XK do
3: X.PUSH(Xcur, 1)
4: SECTIONTEST(Xcur) . See [25]
5: while ¬PTC(Xcur) do
6: Xtop = X.POP
7: xrand ← RESTRICTIONSAMPLING(Xtop)
8: ADDCONDITIONAL(xrand, Gtop)
9: i← COMPUTEIMPORTANCE(Xtop) . In [0, 1]

10: X.PUSH(Xtop, i)
11: end while
12: end for

Algorithm 2 RestrictionSampling(Xk)

1: if EXISTS(Xk−1) then
2: e← SAMPLEEDGE(Gk−1)
3: xbase ← SAMPLEUNIFORM(e) . State on Edge
4: δbias ← SMOOTHPARAMETER(0, δ, η)
5: if RANDOM(0, 1) < δbias/δ then
6: xbase ← UNIFORMNEAR(xbase, δbias)
7: end if
8: xfiber ← SAMPLE(xbase, Fk) . Element of Fk

9: xrand ← LIFT(xbase, xfiber) . Element of Xk

10: else
11: xrand ← SAMPLE(Xk)
12: end if
13: return xrand

depending on an importance criterion i, which we detail later.
We sort the queue such that the space with the maximum
value is on top. We then iterate over the bundle spaces from
X1 to XK (Line 1.2) and push the current space onto the
priority queue with an importance of 1 (Line 1.3). We then
execute a section test (Line 1.4), where we search for a
feasible solution over the path restriction of the solution
path (if any) on the previous bundle space Xcur−1. The
SECTIONTEST method helps to overcome narrow passages,
but is not essential for the understanding of this paper – we
use it as a black box within SMLR. Please see our previous
publication [25] for more information.

We then grow the roadmaps (G1, . . . , Gcur) as long as
the planner terminate condition (PTC) of the current bun-
dle space Xcur is not fulfilled (Line 1.5). In our case,
we terminate if a solution is found or if we reach either
the infeasibility criterion or a time limit. Inside the while
loop, we take the top bundle space Xtop with the largest
importance value (Line 1.6) and sample a random point using
RESTRICTIONSAMPLING (Line 1.7). We then add the point
to the graph with ADDCONDITIONAL (Line 1.8), if it fulfills
the sparseness condition [3], which we detail in Sec. III.
Finally, we recompute the importance of the bundle space
(Line 1.9) and push the space back onto the queue (Line
1.10).

The two methods RESTRICTIONSAMPLING and COM-

PUTEIMPORTANCE are further detailed in the next two
subsections. To facilitate understanding, we give first a brief
overview of each. First, in RESTRICTIONSAMPLING, we
restrict sampling on the bundle space by using informa-
tion from the graph on its base space. We differ from
dense roadmaps by using the visibility region of the sparse
graph which depends on the visibility range δ. Second, in
COMPUTEIMPORTANCE, we use the sampling density of the
sparse graph together with the number of consecutive failures
to estimate the importance of the bundle space and thereby its
position in the priority queue. Next, we discuss each method
in more detail and provide an analysis of the algorithm.

A. Restriction Sampling with Visibility Regions

Let Xk be a bundle space with graph Gk, and let Xk−1 be
its base space with graph Gk−1. To grow the graph Gk, we
use the framework of restriction sampling [22]. In restriction
sampling, we sample states on Xk by uniformly sampling
from the graph restriction of Gk−1 (see Sec. III). To give
guarantees on asymptotic optimality, we would need the
vertices of Gk−1 to become dense in the free state space.

To avoid using a dense graph for sampling [3] while
giving guarantees on asymptotic near-optimality, we opt to
exploit the graph visibility region. The visibility region of
a graph G is the set V (G, δ) = {x ∈ X | d(x, e[I]) ≤
δ for some e in G}, whereby d is the metric on X , e is an
edge from G and e[I] is the image of the edge in X .

Fig. 3: Visibility region
V (G, δ) of a graph G.

To sample the graph vis-
ibility region, we use the
restriction sampling algo-
rithm depicted in Alg. 2.
The algorithm requires an
existing base graph Gk−1

(Line 2.1), then samples
a random state on a ran-
dom edge (Line 2.2). Sam-
pling the visibility region
directly would be too un-
informative. We thus use a
smoothly varying parame-
ter δbias ∈ [0, δ], which first restricts sampling to the sparse
graph (δbias = 0), then smoothly increase in each iteration
until the whole visibility region δ. This situation is visualized
in Fig. 3. To control the rate of change of δbias, we use the
parameter η.

In particular for narrow passages, it is often crucial to
sample directly on the graph restriction. We thus sample the
visibility region (Line 2.6) only in a certain percentage of
cases, depending on δbias. Once a base element is chosen,
we sample a corresponding fiber space element (Line 2.8),
lift the states (Line 2.9) and return the state (Line 2.13). If
no base graph exists, we revert to a uniform sampling of the
space (Line 2.11).

B. Importance and Ordering of Bundle Spaces

To grow sparse multilevel roadmaps, we need to decide
which roadmap on which level we should grow next, i.e. we

need an ordering of bundle spaces. In prior work [22], we
advocated the use of an exponential importance criterion
i(Xk) = 1/(|Vk|1/nk + 1), with |Vk| being the vertices on
the graph Gk on Xk and nk being the dimensionality of Xk,
which was motivated by the sampling density of the graph
which is proportional to |Vk|1/nk [6].

However, sampling density is not good criterion for sparse
roadmaps, because we care more about the coverage of the
free space. To account for the coverage of the free space,
we advocate an importance criterion using Mk, the number
of consecutive sample failures. The number Mk provides an
estimate of the free space coverage, namely as the percentage
1− 1

Mk
[33]. The higher Mk, the less often we should sample

Xk. We formulate the importance criterion thus as

i(Xk) =
1

Mk + 1
. (1)

Note that we stop the algorithm only if Mk > M and Xk is
the current bundle space Xcur. Since i(Xk) will eventually
converge to zero, we ensure that every bundle space up
until k would be chosen infinitely many times. This is an
important requirement to provide asymptotic guarantees of
the algorithm.

C. Analysis of Algorithm

To prove SMLR to be asymptotically near-optimal and
asymptotic sparse, we need to prove that restriction sampling
with visibility regions is dense in the free state space of
the last bundle space X . Since the importance criterion in
Eq. (1) eventually converges to zero, we can thus ensure that
we produce an infinite sampling sequence on the free state
space Xfree. Therefore, when using sparse roadmap spanner
[3] to grow the roadmap on X , we retain all their properties,
which include asymptotic near-optimality and asymptotic
sparseness. However, we might reduce the number of vertices
considerably.

Let us prove that restriction sampling with visibility re-
gions is dense in the free state space Xfree on the fiber bundle
(X,B,F, π). This argument can be applied recursively to
prove the same for fiber bundle sequences [22]. Note that we
use the set-theoretic definition of dense, which states that a
set A is dense in a space X if the intersection of A with any
non-empty open subset U of X is non-empty [18].

Theorem 1: Restriction sampling with visibility regions
on X produces a sampling sequence A = {xm}, which is
dense in Xfree.

Proof: Let U be an arbitrary open set in Xfree. Since π
is admissible, the projection π(U) of U onto B is an open
subset of the free base space [24]. Since uniform sampling on
B with visibility regions will eventually cover the free base
space [33], π(U) will be a subset of the visibility region of
the graph on B. When the number of samples goes to infinity,
we revert to uniform sampling of the graph restriction and
will thus sample π(U) infinitely many times. By sampling
the fiber over π(U), we thus eventually obtain a sample x
in U . Since U was arbitrary, the sequence is dense in Xfree.

06
D

B
ug

tr
ap

[f
ea

si
bl

e]

06
D

B
ug

tr
ap

[in
fe

as
ib

le
]

06
D

dr
on

e
[f

ea
si

bl
e]

06
D

dr
on

e
[in

fe
as

ib
le

]

07
D

ku
ka

[f
ea

si
bl

e]

07
D

ku
ka

[in
fe

as
ib

le
]

34
D

PR
2

[f
ea

si
bl

e]

34
D

PR
2

[in
fe

as
ib

le
]

SMLR (ours) 4.37
10|0|0

2.47
0|10|0

0.23
10|0|0

0.72
0|10|0

1.42
10|0|0

5.34
0|10|0

9.25
9|0|1

0.32
0|10|0

SPARS 60.00
0|0|10

60.00
0|0|10

0.37
10|0|0

60.00
0|0|10

33.66
6|0|4

60.00
0|0|10

60.00
0|0|10

60.00
0|0|10

SPARStwo 60.00
0|0|10

60.00
0|0|10

0.16
10|0|0

60.00
0|0|10

34.86
7|0|3

60.00
0|0|10

60.00
0|0|10

60.00
0|0|10

TABLE I: Runtime (in seconds) of motion planner aver-
aged over 10 runs with 60s time limit. We additionally
show how often a planner terminated with a status of
feasible|infeasible|timeout on each scenario.

V. EVALUATION

To evaluate SMLR, we compare its performance on eight
scenarios against the algorithms SPARS and SPARS2 from
the open motion planning library (OMPL). Both SPARS and
SPARS2 are the only algorithms in OMPL we know of which
can return on infeasible scenarios while not timing out. To
ensure a fair comparison, we set the parameters of SMLR,
SPARS and SPARS2 all to M = 1000, δ = 0.25µ with
µ being the measure of the state space (removing effects
stemming from different parameter values). For SMLR, we
use the parameter η = 1000 which designates how fast we
expand the graph visibility region for restriction sampling.

While we like our algorithm to correctly declare an infea-
sible problem as infeasible, we also like to make sure that
the algorithm does not show false negatives, i.e. declaring
a feasible problem to be infeasible. To ensure correctness,
we always use two similar scenarios, one which is feasible
and one which is infeasible. For all scenarios, we run each
algorithm 10 times with a time limit of 60s. Our setup is a
8GB RAM 4-core 2.5GHz laptop running Ubuntu 16.04.

A. 6-dimensional Bugtrap

Our first scenario is the classical narrow-passage Bugtrap
scenario, where a cylindrical robot (the bug with 6 degrees
of freedom (dof)) has to escape a spherical object with a
narrow exit (the trap), as shown in Fig. 4. We use two
versions, a feasible one with a bug which barely fits through
the exit, and an infeasible one where the bug does not fit.
As a simplification, we use an inscribed sphere which we
describe using the fiber bundle SE(3) → R3. We show the
results in Table I. While SMLR can solve (on average) both
scenarios in 4.37 and 2.47s, respectively, both SPARS and
SPARS2 time out after 60s.

B. 6-dimensional Drone

In the second scenario, we use a free-floating drone with 6-
dof. The drone has to traverse a room which is separated by a

Fig. 4: The eight scenarios used for evaluating our algorithm. Task for each scenario is to move robot from initial state
(green) to goal state (red). Full robot geometry is shown as transparent color, the simplified version as non-transparent
(Note that we use two simplifications for PR2, but only show one). Top Row: Feasible scenarios, where a solution exists.
Bottom Row: Infeasible scenarios, where no solution exists. Left to Right: 6-dimensional Bugtrap, 6-dimensional drone,
7-dimensional KUKA LWR, 34-dimensional PR2.

net. In the first version of the problem, we make the net large
enough to let the drone fly trough (the feasible problem).
In the second version, we make the net finely woven to
prevent the drone from passing (the infeasible problem). As
a simplification, we use a sphere at the center of the drone.
We model this situation with the fiber bundle SE(3)→ R3.
For the feasible scenario, all three planners solve the problem
with SPARS2 taking 0.16s, SMLR taking 0.23s and SPARS
taking 0.37s. In the infeasible scenario, only SMLR solves
the problem in 0.72s, while SPARS and SPARS2 both time
out.

C. 7-dimensional KUKA LWR

In the third scenario, we use a fixed-base KUKA LWR
robot with 7-dof, which has to transport a windshield through
a gap in a wall (Fig. 4). We create two versions, a feasible
one with the gap in the wall and an infeasible one where
we close the gap. As a simplification, we use a projection
onto the first two links of the manipulator arm, which we
describe using the fiber bundle R7 → R3. With our algorithm
SMLR, we can solve both scenarios in 1.42s and 5.34s. For
the feasible scenario, SPARS requires 33.66s (but times out
in 4 cases) and SPARS2 requires 34.86s (but times out in 3
cases). Both SPARS algorithms time out for the infeasible
scenario in all runs.

D. 34-dimensional PR2

In the fourth scenario, we use the mobile-base PR2 robot
with 34-dof, which has to enter a room with a small opening
as shown in Fig. 4. We use again two scenarios, the feasible
one with the opening and an infeasible one where we close
the opening. As a simplification, we use two projections, first
we remove the arms of the robot and second we project onto
the mobile base. We model this situation by the fiber bundle
sequence R34 → R7 → R2. Our algorithm SMLR requires
9.25s to solve the feasible scenario (but times out in 1 case)
and it requires 0.32s to terminate on the infeasible scenario.
Both SPARS and SPARS2 cannot solve any of the runs in
the time limit given.

VI. CONCLUSION

We presented the sparse multilevel roadmap planner
(SMLR), which we believe to be the first algorithm to
generalize sparse roadmap spanners [3] to fiber bundles [22],
which are models of multilevel abstractions. Our algorithm
exploits multilevel abstraction using the notion of restriction
sampling with visibility regions. We have shown SMLR to
be asymptotically near-optimal and asymptotically sparse by
showing restriction sampling to produces a dense sampling
sequence. In evaluations, we showed SMLR to efficiently
and correctly terminate on feasible and infeasible problems,
even when those problems have narrow passages, intricate
geometries or state spaces with dimensions of up to 34-dof.

REFERENCES

[1] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev,
“Multi-heuristic A*,” International Journal of Robotics Research,
vol. 35, no. 1-3, pp. 224–243, 2016.

[2] M. Brandao and I. Havoutis, “Learning sequences of approximations
for hierarchical motion planning,” in International Conference on
Automated Planning and Scheduling, vol. 30, 2020, pp. 508–516.

[3] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptoti-
cally near-optimal motion planning,” International Journal of Robotics
Research, vol. 33, no. 1, pp. 18–47, 2014.

[4] W. Du, F. Islam, and M. Likhachev, “Multi-resolution A*,” 2020,
arXiv:2004.06684 [cs.RO].

[5] P. Ferbach and J. Barraquand, “A method of progressive constraints
for manipulation planning,” IEEE Transactions on Robotics, vol. 13,
no. 4, pp. 473–485, 1997.

[6] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference, and prediction. Springer Science
& Business Media, 2009.

[7] J. Ichnowski and R. Alterovitz, “Multilevel incremental roadmap span-
ners for reactive motion planning,” in IEEE International Conference
on Intelligent Robots and Systems. IEEE, 2019, pp. 1504–1509.

[8] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp.
2407–2414, 2019.

[9] L. Jaillet and T. Siméon, “Path deformation roadmaps: Compact graphs
with useful cycles for motion planning,” International Journal of
Robotics Research, 2008.

[10] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching
tree: A fast marching sampling-based method for optimal motion
planning in many dimensions,” International Journal of Robotics
Research, vol. 34, no. 7, pp. 883–921, 2015.

[11] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in IEEE International Conference on Robotics
and Automation. IEEE, 2011, pp. 1470–1477.

[12] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” International Journal of Robotics Research, vol. 30,
no. 7, pp. 846–894, 2011.

[13] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics, vol. 12, no. 4, pp. 566–580,
1996.

[14] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation, vol. 2, 2000, pp. 995–1001.

[15] S. M. LaValle, Planning Algorithms. Cambridge University Press,
2006.

[16] J. M. Lee, Introduction to Smooth Manifolds. New York, NY: Springer
New York, 2003.

[17] J. D. Marble and K. E. Bekris, “Asymptotically near-optimal planning
with probabilistic roadmap spanners,” IEEE Transactions on Robotics,
vol. 29, no. 2, pp. 432–444, 2013.

[18] J. R. Munkres, Topology: a first course. Prentice-Hall, 1974.
[19] S. Murray, G. D. Konidaris, and D. J. Sorin, “Roadmap subsampling

for changing environments,” in IEEE International Conference on
Intelligent Robots and Systems. IEEE, 2020.

[20] D. Nieuwenhuisen and M. H. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in IEEE International Conference on Robotics and
Automation, vol. 1. IEEE, 2004, pp. 446–452.

[21] J. O’Rourke, Art gallery theorems and algorithms. Oxford University
Press Oxford, 1987, vol. 57.

[22] A. Orthey, S. Akbar, and M. Toussaint, “Multilevel motion planning:
A fiber bundle formulation,” 2020, arXiv:2007.09435 [cs.RO].

[23] A. Orthey, A. Escande, and E. Yoshida, “Quotient-space motion
planning,” in IEEE International Conference on Intelligent Robots and
Systems. IEEE, 2018, pp. 8089–8096.

[24] A. Orthey and M. Toussaint, “Rapidly-exploring quotient-space trees:
Motion planning using sequential simplifications,” International Sym-
posium of Robotics Research, 2019.

[25] ——, “Section patterns: Efficiently solving narrow passage problems
using multilevel motion planning,” 2020, arXiv:2010.14524 [cs.RO].

[26] W. Reid, R. Fitch, A. H. Göktoğan, and S. Sukkarieh, “Sampling-
based hierarchical motion planning for a reconfigurable wheel-on-leg
planetary analogue exploration rover,” Journal of Field Robotics, 2019.

[27] W. Reid, R. Fitch, A. H. Göktoǧgan, and S. Sukkarieh, “Motion plan-
ning for reconfigurable mobile robots using hierarchical fast marching
trees,” in Algorithmic Foundations of Robotics XII. Springer, 2020,
pp. 656–671.

[28] M. Rickert, A. Sieverling, and O. Brock, “Balancing exploration and
exploitation in sampling-based motion planning,” IEEE Transactions
on Robotics, vol. 30, no. 6, pp. 1305–1317, 2014.

[29] O. Salzman, D. Shaharabani, P. K. Agarwal, and D. Halperin,
“Sparsification of motion-planning roadmaps by edge contraction,”
International Journal of Robotics Research, vol. 33, no. 14, pp. 1711–
1725, 2014.

[30] B. Saund and D. Berenson, “Fast planning over roadmaps via selective
densification,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
pp. 2873–2880, 2020.

[31] E. Schmitzberger, J.-L. Bouchet, M. Dufaut, D. Wolf, and R. Husson,
“Capture of homotopy classes with probabilistic road map,” in IEEE
International Conference on Intelligent Robots and Systems, vol. 3.
IEEE, 2002, pp. 2317–2322.

[32] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars, “Mul-
tilevel path planning for nonholonomic robots using semiholonomic
subsystems,” International Journal of Robotics Research, vol. 17,
no. 8, pp. 840–857, 1998.

[33] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based proba-
bilistic roadmaps for motion planning,” Advanced Robotics, vol. 14,
no. 6, pp. 477–493, 2000.

[34] T. Siméon, S. Leroy, and J. P. Laumond, “Path coordination for mul-
tiple mobile robots: A resolution-complete algorithm,” IEEE Transac-
tions on Robotics and Automation, vol. 18, no. 1, pp. 42–49, 2002.

[35] N. E. Steenrod, “The topology of fibre bundles,” 1951.
[36] S. Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and

N. Mansard, “An Efficient Acyclic Contact Planner for Multiped
Robots,” IEEE Transactions on Robotics, vol. 34, no. 3, pp. 586–601,
June 2018.

[37] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” in Robotics: Science and Systems, 2018.

[38] E. Vidal, M. Moll, N. Palomeras, J. D. Hernández, M. Carreras, and
L. E. Kavraki, “Online multilayered motion planning with dynamic
constraints for autonomous underwater vehicles,” in IEEE Interna-
tional Conference on Robotics and Automation. IEEE, 2019, pp.
8936–8942.

[39] W. Wang, D. Balkcom, and A. Chakrabarti, “A fast online spanner for
roadmap construction,” International Journal of Robotics Research,
vol. 34, no. 11, pp. 1418–1432, 2015.

https://doi.org/10.1177/0278364913498292
https://doi.org/10.1177/0278364913498292
https://ieeexplore.ieee.org/document/508439/
https://ieeexplore.ieee.org/document/508439/
https://ieeexplore.ieee.org/document/508439/
https://ieeexplore.ieee.org/document/844730/
https://ieeexplore.ieee.org/document/844730/
http://planning.cs.uiuc.edu/
https://www.springer.com/jp/book/9780387217529
https://ieeexplore.ieee.org/document/6871370/
https://ieeexplore.ieee.org/document/6871370/
https://ieeexplore.ieee.org/document/8341955/
https://ieeexplore.ieee.org/document/8341955/

	Introduction
	Related Work
	Multilevel Motion Planning
	Sparse Roadmaps

	Background
	Optimal Motion Planning
	Multilevel Motion Planning
	Sparse Roadmaps

	Sparse Multilevel Roadmaps
	Restriction Sampling with Visibility Regions
	Importance and Ordering of Bundle Spaces
	Analysis of Algorithm

	Evaluation
	6-dimensional Bugtrap
	6-dimensional Drone
	7-dimensional KUKA LWR
	34-dimensional PR2

	Conclusion
	References

