This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON ROBOTICS

Section Patterns: Efficiently Solving Narrow Passage
Problems in Multilevel Motion Planning

Andreas Orthey

Abstract—Sampling-based planning methods often become in-
efficient due to narrow passages. Narrow passages induce a higher
runtime, because the chance to sample them becomes vanishingly
small. In recent work, we showed that narrow passages can be
approached by relaxing the problem using admissible lower di-
mensional projections of the state space. Those relaxations often
increase the volume of narrow passages under projection. Solving
the relaxed problem is often efficient and produces an admissible
heuristic we can exploit. However, given a base path, i.e., a solution
to a relaxed problem, there are currently no tailored methods to
efficiently exploit the base path. To efficiently exploit the base path
and thereby its admissible heuristic, we develop section patterns,
which are solution strategies to efficiently exploit base paths in
particular around narrow passages. To coordinate section pat-
terns, we develop the pattern dance algorithm, which efficiently
coordinates section patterns to reactively traverse narrow pas-
sages. We combine the pattern dance algorithm with previously
developed multilevel planning algorithms and benchmark them
on challenging planning problems like the Bugtrap, the double
L-shape, an egress problem, and on four pregrasp scenarios for a 37
degrees-of-freedom shadow hand mounted on a KUKA LWR robot.
Our results confirm that section patterns are useful to efficiently
solve high-dimensional narrow passage motion planning problems.

Index Terms—Intelligent robots, motion planning.

1. INTRODUCTION

Sampling-based motion planning algorithms are a successful
paradigm to automate robotic tasks [53]. However, sampling-
based algorithms do not perform well when the state space of
the robot contains narrow passages [39], [60], [81], [95], which
are low-measure regions which have to be traversed to reach
a goal. Narrow passages are often occurring in tasks which are
particularly important in robotic applications, like grasping, peg-
in-hole, egress/ingress, or long-horizon planning problems [25],
[36].

Manuscript received October 27, 2020; revised February 9, 2021; accepted
March 29, 2021. This work was supported in part by MPI-IS for the Max-Planck
Fellowship. This paper was recommended for publication by Associate Editor
S. Huang and Editor W. Burgard upon evaluation of the reviewers’ comments.
(Corresponding author: Andreas Orthey.)

Andreas Orthey is with the Physical Reasoning and Manipulation Lab, Max
Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany (e-mail:
aorthey @is.mpg.de).

Marc Toussaint is with the Physical Reasoning and Manipulation Lab, Max
Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany and also
with the Intelligent Systems Lab, Technical University of Berlin, 10587 Berlin,
Germany (e-mail: toussaint@tu-berlin.de).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TRO.2021.3070975.

Digital Object Identifier 10.1109/TR0O.2021.3070975

and Marc Toussaint

In previous work, we and other research teams have shown
that we can often efficiently solve high-dimensional planning
problems by using admissible lower dimensional projections of
the state space, a topic we refer to as multilevel motion plan-
ning [5], [23], [69], [78], [101]. When using a multilevel motion
planning framework, we can often use solutions to simplified
planning stages as admissible heuristics for the original problem
[1], [72]. To efficiently exploit those admissible heuristics, we
can use biased sampling methods [69], [77], which we can
combine with classical planning algorithms like the rapidly
exploring random tree algorithm [65], the probabilistic roadmap
planner [67], its optimal star versions [69], or the fast marching
trees planner [77]. However, while showing promising runtimes,
those algorithms are prone to get trapped when run on problems
involving narrow passages.

In this work, we address narrow passages in multilevel mo-
tion planning problems by developing section patterns. Section
patterns are methods to explicitly address problematic situations
that occur when we exploit solutions to relaxed problems.

We introduce four section patterns. First, we introduce the
Manhattan pattern, which we use to compute solution paths
which actuate the minimal amount of joints to reach a goal re-
gion, which is advantageous for high-dimensional systems [14],
[69]. Second, we introduce the Wriggle pattern, which we use
to make small random walk steps to traverse a narrow passage.
Third, we introduce the Tunnel pattern, which we use to steer
around small infeasible regions. Fourth, we introduce the Triple
step pattern, which we use to backtrack in case the algorithm
gets stuck. In Fig. 1, the Triple step pattern is showcased for
a 37-degrees-of-freedom (DoF) robotic hand. We execute the
pattern when a collision occurs. We first backstep, then sidestep,
and finally we make a forward step to reach a goal position. The
details of this and of the other pattern will be detailed later in
this article.

To coordinate the execution of the four section patterns, we
develop a novel algorithm we call pattern dance. The pattern
dance algorithm applies the section patterns sequentially by
trying first a pattern which is easy to compute (Manhattan
pattern) and reverting to the more complex pattern like Wriggle
or Tunnel only if needed. If all those patterns fail, we revert
to the Triple step pattern, which is the most computationally
demanding pattern. We embed this pattern dance algorithm into
four multilevel planners [69]—namely, the quotient space RRT
(QRRT) [65], the quotient space roadmap planner (QMP) [67],
and its optimal versions QRRT* and QMP* [69].

Our contributions are as follows.

1552-3098 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0002-1478-1405
https://orcid.org/0000-0002-5487-6767
mailto:aorthey@is.mpg.de
mailto:toussaint@tu-berlin.de
https://doi.org/10.1109/TRO.2021.3070975

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2
(1 Collision X2 Backstep )
(3 Sidestep

Fig. 1. Efficient exploitation of admissible heuristics (stemming from solution

to relaxed problem) using the triple step pattern. The triple step pattern is one
of four section patterns we advocate to efficiently exploit admissible heuristics
near narrow passages.

1) We develop section patterns to efficiently exploit base
space paths (solutions to relaxed problems).

2) To coordinate sections patterns, we develop the pattern
dance algorithm.

3) We combine the pattern dance algorithm with four mul-
tilevel planners (QRRT, QRRT*, QMP, QMP*) and com-
pare against 36 planners from the open motion planning li-
brary (OMPL) and a previous sidestepping algorithm [69]
on 7 challenging scenarios.

II. RELATED WORK

Let us review the literature by focusing on two topics. First,
we focus on generating admissible heuristics [21] for motion
planning problems involving continuous domains [53]. We dis-
cuss sources of admissible heuristics like constraint relaxations,
lazy search, informed trees, and past experience. Second, given
an admissible heuristic, we review methods to efficiently exploit
the heuristic either using path section approaches, local minima
avoidance or narrow passage handling.

A. Generating Admissible Heuristics

Motion planning [53] is a well-studied topic which has
been successfully applied to a wide range of problem do-
mains [64]. One of the most promising paradigms to solve mo-
tion planning problems are (asymptotically optimal) sampling-
based planners [6], [26], [46], [84], [85]. However, these plan-
ners might become inefficient in state spaces which are too

IEEE TRANSACTIONS ON ROBOTICS

high-dimensional [69], contain intricate constraints [43], or nar-
row passages [55]. We can, however, often solve such problems
efficiently, if we use admissible heuristics [1].

We believe there are three large sources of admissible heuris-
tics. First, we can compute admissible heuristics as solutions to
relaxed problems [72]. Early instances of this idea to motion
planning can be found in the constraint relaxation frameworks
by Bayazit et al. [5], Ferbach and Barraquand [23], Sekhavat
et al. [88]. Newer instances of this idea are putting the focus
on different aspects like the specific type of projection [31],
[93], or the type of lower dimensional space [9], [67]. We refer
to all those frameworks under the collective term multilevel
motion planning [69]. We can apply multilevel frameworks
both to holonomic [77], [78] and nonholonomic planning prob-
lems [69], [101]. To create multilevel abstraction, we can often
remove links from a robot [5], [108], shrink links [3], [81], or
approximate a robot by simpler geometries, either exact [32],
[67], or approximate [11], [79], [96]. While most methods use
prespecified levels of abstraction, we can also use workspace
information to compute abstractions on the fly [58], [105],
adaptively switch between abstractions [92], or learn useful
abstractions for specific instances [9]. Our approach is similar,
in that we also use a multilevel motion planning framework [69].
However, our work is complementary, in that we focus specif-
ically on computing path sections in the presence of narrow
passages in the state space.

A second source of admissible heuristics are lazy search [8],
[34] and informed sets [27], [45]. Instead of using relaxations,
we can compute lazy paths (paths not checked for collisions),
either forward from the start [37] or backward from the goal [91],
to create an efficient heuristic which we can exploit using
dedicated algorithms [28]. Once a solution exists, we can also
exploit informed sets, sets which exclude all states with provable
higher cost-to-go [27], [28]. Those methods are particularly
important, since edge evaluations is one of the bottlenecks in
motion planning [48]. It makes, therefore, sense to develop
heuristics which evaluate edges as late as possible [38], [62].

Third, inspired by pattern database approaches in discrete
search [15], [22], [40], we can also construct admissible heuris-
tics by using past experience. We can achieve this by either
precomputing motion primitives, like steering functions or con-
trollers like linear quadratic regulators [82], [83]. Or, we can
store previous solution paths directly and use them as heuristics
in new environments [18], [76]. Our work is complementary, in
that we assume a given heuristic and we focus on exploiting this
heuristic as efficiently as possible.

B. Exploiting Admissible Heuristic

Given an admissible heuristic, we can optimally exploit it
by discretizing the state space [24] and by using the A* algo-
rithm [1], [35], [72]. However, discretizing the state space usu-
ally does not scale well to higher dimensional state spaces [12],
[29], [73], and performance would be sensitive to the resolution
used [20]. To avoid discretization, we found three categories
of work which use continuous methods to exploit admissible
heuristics.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORTHEY AND TOUSSAINT: SECTION PATTERNS: EFFICIENTLY SOLVING NARROW PASSAGE PROBLEMS IN MULTILEVEL MOTION PLANNING 3

First, we can use biased sampling methods. A straightforward
way would be to represent the heuristic value of a state by the
radius of a hypersphere around the state [56]. We could then
exploit this hypersphere using dynamic domain sampling [104].
Using such a scheme, we would expand states with higher heuris-
tic values more often. Depending on the exact type of heuristic
function used, we would obtain sampling distributions which
would increase the probability to sample states which are near to
restricted workspace geometries [98], [103], to state space obsta-
cles [2], or to narrow passage [39]. Those sampling distributions
could also be learned over time to improve sampling [42], [59].
Our approach is similar as we also use sampling-based methods.
We differ, however, as we concentrate on designing efficient
patterns complementary to biased sampling methods.

Given a solution to a relaxed problem, we can often use this
solution as a guide path heuristic [96], [108] to quickly find
a solution in the original state space. Using the parlance of
fiber bundles, we call this the find section problem [69] . This
problem requires a relaxed solution (a base path), which we can
find by computing workspace regions [74], by using workspace
graphs [17], [97], or by using a simpler robot geometry [96].
In more complex environments, it is often advantageous to use
multiple base paths [17], [102], which decompose the original
problem into smaller subproblems [7], [66], [75]. To exploit
a base path, we can often use restriction sampling [67], [71]
, which is highly efficient in high-dimensional state spaces,
where uniform sampling would most likely fail to find solutions
in a reasonable time [32]. Apart from biasing sampling, we
can also explicitly search over the set of states which project
onto the base path [108], which we call the path restriction.
To find paths over path restrictions, we previously developed
a sidestepping approach [69], where we propagate states along
the path restriction and execute sidesteps when collision occur.
However, as we show in Section V, sidesteps are often not
beneficial for narrow passages. While we also search over path
restrictions, we differ by developing dedicated patterns to more
efficiently traverse narrow passages.

Path section approaches and other heuristic search methods
often fail because they reach local minima. We define a local
minimum as a region in state space where the heuristic is not or
only weakly correlated with the true cost-to-go [100]. To address
local minima, we can choose one of two approaches. First, we
could preemptively avoid local minima. If the environment is
static, we can learn minima regions and use this information
to update the heuristic function [100]. Second, we could try
to escape local minima. There exist several methods to escape
local minima like deflating the heuristic value of states close
to obstacles [19] or increasing the search resolution to prevent
evaluation of closeby states [20]. A related idea is to utilize Tabu
search [30] to prevent sampling in previously visited regions.

It is important to make the distinction between local minima
which trap the planner and regions which might look like local
minima but which a planner can actually traverse. We call such
regions narrow passages [86]. To verify the existence of narrow
passages in low-dimensional state spaces, we can use exact in-
feasibility proofs [4], [87], for example using geometrical shapes
like alpha complices [63], or cell decomposition methods [107].

Because many state spaces have alocal product structure, we can
often use configuration space slices [57], [89] to efficiently test
for infeasibility [99]. If the problem is feasible, we could then
use the geometrical shapes to enumerate narrow passages [61].
To exploit narrow passages, we could bias sampling to the most
constricted areas [95], [103]. We differ to those approaches by
not explicitly modeling narrow passages or local minima, but
we instead, develop reactive measures to escape minima and to
traverse narrow passages. We thereby avoid spending time on
irrelevant narrow passages.

III. BACKGROUND

Let us describe the necessary background to follow the
exposition of our algorithm in Sections IV and V. We start
by explaining multilevel motion planning, i.e., planning with
sequences of relaxed subproblems. While several formulations
exist, we believe the framework of fiber bundles [69] to be a good
way to concisely model multilevel abstractions and describe
our algorithms. We then describe the concepts of lift, path
restriction, and path section which are particularly important.
Finally, we describe the notion of admissible heuristics, which
is one of the fundamental concepts to exploit solutions to relaxed
problems [72].

A. Optimal Motion Planning

Let X be the state space of the robot. To each state space, we
associate a constraint function ¢ : X — {0, 1} which evaluates
to Oif a state is constraint-free and to 1 otherwise. We use the con-
straint function to define the free state space Xpee = {2 € X |
¢(x) = 0}. Together with an initial configuration x; € Xy and
a goal configuration xg € Xfee, We define an optimal motion
planning problem [6], [46], [84], as the tuple (Xfee, 27, Zq, €),
whereby our task is to develop an algorithm which computes a
path from x; to x¢ while staying in Xy, and minimizing the
cost functional c. In this work, we use a minimal-length cost
functional, but other costs are also possible like minimal energy
or maximum clearance.

B. Multilevel Motion Planning

Since high-dimensional motion planning problems are often
too computationally expensive to solve, we use a sequence of re-
laxed problems which we refer to as multilevel abstractions [69].
Given a state space X, let us denote a multilevel abstraction as
the tuple {X1,..., Xk} with Xx = X. To each state space
X, we associate a constraint function ¢y, and a projection 7,
from X}, to X;_1. We say that the projection 7y, is admissible
(w.r.t. the constraint functions), if ¢5_1 (7 (z)) < ¢p(x) for
any z in Xj. With admissibility, we basically guarantee that
solutions are preserved under projections [65]. If we would
allow inadmissible projections, we would potentially sacrifice
solutions and thereby sacrifice (probabilistic) completeness.

C. Fiber Bundle Formulation

When working with multilevel abstraction, we quickly stum-
ble upon situations where we lack the appropriate vocabulary

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

T
X > P e
HTTTTTINLLHA
E —»WF r(P) KTTITHHH
HTTTTTNLLLHHA
R -~~~ AL -
v

Fig. 2. Left: Fiber bundle R® — R? with base space B, total space X,
fiber space F', mappings 7, m and fiber F} over base element b. Right: Path
restriction 7 (p) over base path p. Adapted from [69].

to describe solution strategies. As a remedy, we describe mul-
tilevel abstractions using the framework of fiber bundles [41],
[54], [90]. A fiber bundle is a tuple (X%, Xp_1, F, 7%, T, )
consisting of a total space Xj, a base space Xj_1, a fiber
space F}, a projection mapping 7 from total to base space,
and a fiber projection mapping 7p, from total to fiber space.
We assume the projection mapping 7 to be admissible. With a
fiber bundle, we model product spaces which locally decompose
as X = Xj_1 X F). The total space X} is a union of fiber
spaces which are parameterized by the base space X_;. If the
level k is unimportant for the task as hand, we often refer to
a fiber bundle as the tuple (X, B, F, w, 7p) with X being the
total, B the base, F' the fiber space, and 7, 7 the base and fiber
projection, respectively. We visualize a prototypical fiber bundle
in Fig. 2 (left). For more details and motivation, we refer to our
prior work [69]. For the purpose of this article, we focus on the
three concepts of lift, path restriction, and path section, which
we explain next.

D. Lift

Let (X, B, F, 7, 7F) be a fiber bundle and let b € B be a base
space element. We often like to project the element b back to
the total space X. We call this operation a lift [69], [80]. We
define a lift as a mapping LIFT : B — X. To uniquely select
an element in X, we will overload this function as a mapping
LIFT : B x F' — X by providing a fiber space element f in F'.
If X is a product space, we define the lift as LIFT(b, f) = (b, f)
[69].

E. Path Restrictions

Letp: I — B with I = [0, 1] be a path on the base space (a
base path). Given a base path, one of the most central sets which
we use in this work are path restrictions. A path restriction is
the set 7(p) = {z € X | w(x) € p[I]}, whereby p[I] = {p(t) :
t € I} is the image of the base path in B and 7 is the projection
from X to B. We visualize this situation in Fig. 2 (right), where
we show the image of a base path on the disk-shaped base space
and its associated path restriction on the total space.

IEEE TRANSACTIONS ON ROBOTICS

F. Path Sections

Given a path restriction, we are often interested in finding
paths which are lying inside the path restriction. We call them
path sections [90]. A (smooth) path section w.r.t. a base path
p is a continuous mapping s from base space B to total space
X such that 7(s(u)) = w for any u in the image of p [54]. This
means, for each base path element, we select a unique state from
the path restriction in a continuous manner.

G. Admissible Heuristics

Our motivation to introduce path restrictions and path sections
comes from the role they play in exploiting admissible heuristics.
Given a goal state z¢, an admissible heuristic h(z) for a state x:
in X is a lower bound on the true cost-to-go (or value) function
h*(x), which we define as the cost of the optimal path from x to
x ¢ through Xf... Formally, we write this condition as h(z) <
I () [11, [65], [721.

Given an admissible heuristic, we can try to reach the goal x¢
by using locally optimal decisions [35]. If we are at a state z,
we can make an optimal decision by doing a two-step approach.
First, we compute the f-value of all its neighbors, which is the
sum of its heuristic value and its cost-to-come from the start
state. We then expand the state (node) with the lowest f-value,
because, under the admissible heuristic, it is our best guess to
efficiently reach the goal [72].

However, in a continuous domain, we cannot straightfor-
wardly compute all neighboring states. Instead, we imagine
computing a small e-neighborhood around the state. To compute
heuristic values, we project the complete neighborhood down
onto the base space. To reach the goal, our best guess is to make a
step into the direction of the current minimal-cost base path. The
states which we would expand in that way are exactly the states
on the path restriction. By searching a path section over this path
restriction, we efficiently exploit the admissible heuristic given
by the base path.

IV. FIND SECTIONS USING PATTERN DANCE

Our goal is to develop an algorithm which solves the find
section problem, the problem of finding a path section over a
given path restriction. After we state the problem, we discuss
how the problem fits into the more general framework of motion
planning using multilevel abstractions [69]. Finally, we discuss
the pattern dance algorithm, which coordinates four section
patterns to efficiently find feasible path sections.

A. Find Section Problem

Let (X, B, F,7,mp) be a fiber bundle on X (possibly in a
sequence of fiber bundles) and let p : I — B be a base path on
B starting at 7(z7) and ending at 7w (x¢). Given the base path
p and its path restriction r(p) C X, our goal is to develop an
algorithm to find a feasible path section, i.e., a path lying in the
intersection of the path restriction 7(p) and the free state space
Xiree connecting xy to x . We call this problem the find section
problem.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORTHEY AND TOUSSAINT: SECTION PATTERNS: EFFICIENTLY SOLVING NARROW PASSAGE PROBLEMS IN MULTILEVEL MOTION PLANNING 5

Restriction
r(p)

Algorithm 2: FindSection(Xy,).
1: if Exists(X%_1) then
2 p < BasePath(Gy_1)
3 r < Restriction(p)
4:  H < HeadPointer(zy,location = 0,1)
5
6

PatternDance(H)
end if

| = Location(H) p

m(zr)

Fig. 3. Path restriction r(p) on a total space X over a base path p from base
space B, together with initial state x, goal state ¢, projection 7 and head
pointer with head pointer H, consisting of state  and location [.

Algorithm 1: MultilevelPlanner(z;, xg, X1, ..., XK).

Input: Initial state x;, goal state ¢, state spaces
X1, o, XK

Output: Graphs G, . ..
1:  Let X be a priority queue()

2: fork =1to K do

3 FindSection(Xy)

4 X.push(X},, IMPORTANCE (X))

5:  while —ptc(Xy) do

6: Keleet = X.pop()

7.

8

9

0

1

>GK

Grow (Xselecl)
X.push(Xeleet, IMPORTANCE( X elect ) )
end while
end for

return Graphs(Xy, ..., Xk)

To illustrate the find section problem, we visualize it in Fig. 3.
The figure shows a base path p on B (bottom) and its restriction
r(p) on X (top). Our goal is to connect x; to x¢ while staying
inside r(p). To efficiently solve the find section problem, we
often need to track information along the path restriction. To
track this information, we introduce the notion of a head pointer
H as the tuple H = (z,l,r) consisting of a path restriction
r(p) € X over a base path p in B, a current state z in r(p) and
a location [ € [0, 1] defining the position along the base path.
We think of the head pointer as a ruler which we move forward
along the path restriction toward the goal state. In pseudocode,
we refer to the current state as STATE(H ) and its location as
LOCATION(H).

B. Find Sections in Multilevel Planning

The find section problem is a subproblem of the more gen-
eral multilevel motion planning problem (see Section III-B).
In previous works, we proposed to solve multilevel planning

problems using a dedicated multilevel planner [69] . To clarify
the role of finding sections, we describe this multilevel planner in
Algorithm 1. We initialize this algorithm with an initial state =,
a goal state x¢, and a sequence of bundle spaces X, ..., Xk.
To search for a feasible path, we first initialize a priority queue
(Line 1), then we iteratively explore the bundle spaces (Line 2)
by first trying to solve the find section problem (Line 3), then
pushing the kth bundle space into the priority queue (Line 4).
We compute the importance of a bundle space by the sampling
density of its associated graph [69] as

1
Importance(X}) = AR W

with |Vj| being the number of nodes in the graph G on Xy,
and ny, is the dimensionality of X . We then start a while loop a
planner terminate condition (PTC) of the kth space is not fulfilled
(Line 5). A PTC can be a timelimit, an iteration limit or a desired
cost. We then pop the space with the lowest importance from
the queue (Line 6), execute one grow iteration for the selected
bundle space (Line 7), and push the space back to the queue
thereby updating its importance (Line 8). The planner terminates
if the PTC of all bundle spaces is false and returns the graphs of
all computed levels (Line 11). From those graphs, we can then
compute the (optimal) solution path using a discrete A* search
[35] (if one exists). All multilevel planner share this high-level
structure. Multilevel planner differ by how the Grow function is
implemented.

We previously developed four multilevel planners. First, the
quotient-space roadmap planner (QMP), in which we implement
GROW as a probabilistic roadmap (PRM) step [47] . Second,
the quotient-space rapidly exploring random tree (QRRT), in
which we implement GROW as an RRT step [49] . Finally,
we use the two asymptotically optimal versions QRRT* and
QMP*, in which we implement a step of RRT* and PRM* [46],
respectively. The algorithms also differ in how we compute the
distance metric and how we implement sampling inside the grow
function, as we detail in our previous publication [69].

The main contribution of our article, the pattern dance algo-
rithm, is an efficient method to solve the find section problem.
The integration into the multilevel planner is shown in the
FINDSECTION method in Algorithm 2. First, we check if there
exists a base space (Line 1). We then compute a base path p
from the underlying graph or tree on the base space (Line 2).
We then build a path restriction r from p (Line 3) and create a
head on the path restriction (Line 4). We then call the pattern
dance algorithm with the head as input.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Algorithm 3: PatternDance(H, depth = 0).

Parameters: Maximum branching factor B,,s, maximum
depth factor Dy, base space step size dx, ,

1. if ManhattanPattern(H) then
2: returntrue
3: end if
4: if depth > Dy, then
5: returnfalse
6: end if
7. if WrigglePattern(H) or TunnelPattern(H ) then
8: returnPatternDance(H, depth+1)
9: end if

10: [ < Location(H) + dx,_,

11: zp < BasePathAt(p,l)

12: for j € [1, Byay) do

13: xp < SampleFiber(xp)

14:  z <« Lift(xp,zp)

15:  apy < State(H)

16:  if IsValid(x)and—CheckMotion(x g, ) then

17: if TripleStepPattern(H, ) then
18: return PatternDance(H, depth+1)
19: end if

20: end if

21: end for

C. Pattern Dance Algorithm

We depict the pseudocode of the pattern dance algorithm in
Algorithm 3. The input is a head over the path restriction and a
recursion depth (initially set to zero). Inside the pattern dance
algorithm, we coordinate the execution of four section patterns.
The rational behind the coordination is to try less complex
patterns first while we can successfully move the head forward
along the path restriction. Only if no progress is made, we revert
to more and more complex patterns to resolve the situation. We
found this to be an efficient strategy to quickly find sections.

Those four section patterns are detailed in Section V and either
move the head forward by controlling the lowest amount of joints
possible (MANHATTANPATTERN), execute random walk steps
with forward bias (WRIGGLEPATTERN), try to overcome small
barriers using steps outside the path restriction (TUNNELPAT-
TERN), or use a dedicated backtracking procedure (TRIPLESTEP-
PATTERN) to efficiently find feasible path sections.

Before going into detail, we provide a brief summary and mo-
tivation. The algorithm iterates through all four patterns, starting
with the computationally most inexpensive one MANHATTAN-
PATTERN (Line 1). If the pattern succeeds, we successfully return
(Line 2). Otherwise, we check if we reached the maximum
recursion depth (Line 4) and return with failure (Line 5).

If the depth is below the maximum depth, we continue by
executing first the WRIGGLEPATTERN and the TUNNELPATTERN
(Line 7). If one pattern successfully terminates, we recursively
call the pattern dance algorithm and we increase the recursion
depth (Line 8). If no pattern successfully terminates, we back-
track using the TRIPLESTEPPATTERN . To execute the triple step
pattern, we first interpolate a single step forward along the base

IEEE TRANSACTIONS ON ROBOTICS

o

N/

x1

Fig. 4. Left: Rectangular rigid robot which has to traverse a narrow passage
from a green start to a red goal state. Right: The geometry of its state spaces
(darker colors are closer to start state).

2.5 2.5
zo[rad] | wofrad] b
0.0 0.0
—925 —2.5
-2 0 2 -2 0 2
z1[m] 1 [m]
Fig. 5. Path restrictions near narrow passages.
1 1
25 e
Do P2 apy
,,,,,,,,,,,,,,,,,,,,, i
Zo[rad] :
1
1
0.0 Par—p,
b=
T4
1 1
1 1
—2.5 1 g
1 1
2 fiber 0 2
1 [m]
! o | - P o
(a) (®) (©) ()]

Fig. 6. Triple step pattern to traverse a narrow passage. We start at a state
p1 (a), backstep to a state pa (b), sidestep along the fiber to p3 (c), and then
step forward to reach a state p4 (d). (a) At pp (after collision). (b) At po (after
backstep). (c) At p3 (after sidestep). (d) At p4 (after forward step).

path (Lines 10, 11). We then attempt to find a valid fiber space
element for a maximum of B, attempts (Line 12). This is done
by first sampling a fiber state over the given base state (Line 13).
We then lift the state to the path restriction (Line 14) to obtain a
state «. If this state is valid and we cannot reach it from the head
state (Line 16), we execute the triple step pattern with target «
(Line 17). If we successfully executed the pattern, we call the
pattern dance algorithm again recursively. Note that the small
forward step of dx, , (Line 10) is an essential component of
our algorithm. If we would sample directly over the head base
state, we often would sample symmetrical local minima (as an
example, see state p) in Fig. 6). We found this to be particularly

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORTHEY AND TOUSSAINT: SECTION PATTERNS: EFFICIENTLY SOLVING NARROW PASSAGE PROBLEMS IN MULTILEVEL MOTION PLANNING 7

TABLE I
PARAMETERS USED IN ALGORITHM. THE VARIABLE g x REFERS TO THE
MEASURE (VOLUME) OF THE STATE SPACE X

Parameter Description Values used
Dimax Maximum depth of pattern dance 3
Brax Maximum branching of pattern dance 500
Smax Maximum sampling attempts 100

0x) Step size on base space 0.01lpx,
OF, Step size on fiber space 0.01pp,

important for higher dimensional state spaces, where we often
encounter infinitely many symmetrical local minima (consider
the set of horizontal rotations of the cylinder before entering the
opening in the Bugtrap scenario in Section V).

To implement the section patterns and the pattern dance
algorithm, we use the OMPL [94] . The algorithms are freely
available and part of our multilevel motion planning extension
of OMPL [69]. All code can be downloaded over github'.
All parameters used in the algorithms are shown in Table I,
including the values we use for the evaluations. The values for
Biax, Smax, Dmax are chosen as large as possible to still give
good performance on our hardware.

V. SECTION PATTERNS

The pattern dance algorithm relies on four section patterns,
to which we like to provide more details and motivation. Each
of those section patterns is a particular approach to efficiently
traverse narrow passages and escape local minima, whereby a
local minimum is defined as a region where the heuristic cost
is only weakly correlated with the true cost-to-go [100] . Each
section pattern takes as input a head pointer and tries to move
this head pointer forward along the path restriction. Please also
consult Fig. 3 for visualization of the terminology used.

A. Manhattan Pattern

Our first section pattern to propagate the head pointer H is the
Manhattan (MH) pattern. With the MH pattern, we interpolate
a path between the head state and the goal state along the path
restriction. To interpolate, we first interpolate along the base
path while keeping the fiber element fixed. Once we reach
the end of the base path, we interpolate along the fiber space
to the goal state. This method is motivated by our desire to
actuate the smallest number of joints at the same time, which is
advantageous for high-dimensional systems [14].

We detail the MH pattern in Algorithm 4. We take as input a
head pointer H over a path restriction r with base path p. We
first project the head state onto the fiber (Lines 1 and 2) by using
the fiber projection 7. We then take the location of the head
pointer along the base path (Line 3) and step along the base path
inincrements of 0 x, , (Line 5-10) and add the states to the path
s (Line 4). This is done by computing the next base state (Line
6), lifting the base state into the total space (Line 7) and adding

Thttps://github.com/aorthey/MotionExplorer/ ~ and
aorthey/ompl/.

https://github.com/

Algorithm 4: ManhattanPattern(/7).
Parameters: Base space step size 0x, ,
xp < State(H)
xp « ProjectFiber(xy)
l « Location(H)
s+ 0
while ! < Length(p) do
xp < BasePathAt(p,l) ©>State p(l) on base path
x+ Lift(zp,zF)
s+ sU{z}
l—1+6x, ,
end while
s+ sU{zg}
H < CheckMotion(s)
return HasReachedGoal(H)

> 7TF<.’17H)

R AR R o N

—_— =
N= 2

>Return Last Valid

p—
(O8]

it to the path (Line 8). Once we reached the end of the base path,
we add the goal state to the section (Line 11). The resulting
path s is schematically shown in Fig. 3. Finally, we evaluate the
path by moving along until a constraint violation occurs or we
reached the goal state (Line 12). The function CHECKMOTION
returns the last valid state which we use to update the head H.
We then return true if the head has reached the goal and false
otherwise.

B. Interlude: The Geometry Near Narrow Passages

The next three section patterns are tailor-made solutions to
either traverse a narrow passage or to escape a local minimum.
To motivate those patterns, we first study the geometry of state
spaces near narrow passages. We use a simple toy example of
a rigid rectangular body moving in the 2-D plane. The state
space of this rigid body is the special euclidean group SE(2),
consisting of position and orientation. We assume that the body
is located near to a narrow passages as shown in Fig. 4 (left).
We will further assume that our task is to move the rigid body
through the narrow passage, from a start state (green) to a goal
state (red). We will represent a state as (zg, 1, z2) € SE(2),
with zg, 1 being vertical and horizontal displacement and x5
the orientation. We visualize a subset of the state space in Fig. 4
(right), whereby points in collision are colored from dark red
(low z1 value, close to start) to bright blue (high x; value, close
to goal).

To generate path restrictions, we first use a relaxation of the
problem onto a circular disk as shown in Fig. 4 (Left). We model
this relaxation using the fiber bundle SE(2) — R? with base
space R? and total space SE(2) [67]. Let us assume a base path
p : I — R for the disk to be given. This path induces a 2-D path
restriction in SE(2), two of which we visualize in Fig. 5. The
left figure shows a path restriction for a base path going straight
through the passage, as shown in Fig. 4. The right figure shows
a path restriction for a base path which goes slanted through the
passage. Both are also slices through the state space geometry
shown in Fig. 4 (right). From Fig. 5, we observe that there are at
least three failure cases. Either, we reach a local minimum, we

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.


https://github.com/aorthey/MotionExplorer/
https://github.com/aorthey/ompl/

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

collide with constraints near a narrow passage or we get stuck in
front of a small but infeasible region. For each case, we develop
a dedicated section pattern to either advance or backtrack.

C. Triple Step Pattern

To escape a local minimum, we develop the triple step pattern.
With the triple step pattern, we connect two states on the path
restriction using a triple backtracking step.

The idea of the triple step pattern is to connect two states on (or
near) the same fiber. Before explaining the pattern in detail, we
first visualize the pattern in Fig. 6. You can see arectangular rigid
body in the plane, which is currently at state p; [see Fig. 6(a)] and
which we like to move to state p4 [see Fig. 6(d)]. To connect those
states, we first move backward along the path restriction from
p1 to another state po [see Fig. 6 (b)] while moving from py4 to
another state p3 [see Fig. 6 (c)], respectively. We move backward
until we can connect ps and ps by a straight line segment. In
that case we execute a backstep from p; to po, a sidestep (along
the fiber marked) from ps to p3 and a forward step from ps to
p4. Note that p, is slightly moved forward such that we avoid
situations where we backtrack to a symmetric local minimum
like p| which would not improve our location along the path
restriction.

We show the pseudocode for the triple step pattern in Al-
gorithm 5. Our goal is to connect the head state to the given
state x. We first compute a midpoint on the fiber space (Line
5) (to minimize the number of CHECKMOTION calls [62]). We
then move backward along the base path while we are greater
than the parameter dx, , (Lines 6 and 7). For each location,
we interpolate a base state (Line 8), lift the state using the
fiber midpoint (Line 9) and check if this state is valid. If it
is valid, we compute intermediate states x; and xo (Lines 11
and 12) and check if the motion between them is feasible (Line
13). If that is true, we additionally check if the backward and
forward steps are feasible (Lines 14, 15). If that is true, we add
those edges to the graph (Lines 16—18), and update the head
to our new state x (Line 19). In that case we return true (Line
20). If we fail to find such a triple step, we terminate once we
reach the beginning of the base path location and return false
(Line 27).

D. Wriggle Pattern

If we reach a local minimum, the triple step pattern is a way to
backtrack to a narrow passage. However, we often might execute
the triple step pattern prematurely, because we bumped into
constraints near or in a narrow passage. To circumvent those
situations, we use the wriggle pattern. With the wriggle pattern,
we make coordinate random steps along the fibers of the path
restriction and accept a step if it is valid, which is similar to
retraction-based sampling [106]. We visualize this pattern in
Fig. 7.

We show the pseudocode in Algorithm 6. We start by making
one 0y, , step forward from the head (Line 1). Until we have
not reached the end (Line 3), we get the base state at location [
(Line 4), and get the fiber element of the head state (Line 6). We

IEEE TRANSACTIONS ON ROBOTICS

P y——
25 S
L T T I |
I. L I I I A | ‘
xo[rad] gt
LR ]
| o o B P
0.0 P
LI I R I I B |
L I I I B |
LI I I B O i |
|/|V|//7|
1 [
[JAPZ
25 Plegers
. [ e . .
—2 0 2

T [m}

Fig.7. Wriggle pattern to traverse a narrow passage: Given a feasible state p1,
we make coordinated random walk steps along the fibers of the path restriction.
The distance between fibers is determined by the base space step size parameter
Ox, -

k-1

Algorithm 5: WrigglePattern(H).

Parameters: Base space step size dx, ,, fiber space step
size dp, , maximum samples Spax

1: 1+« Location(H) + x,_,
2: steps <0
3: while! < Length(p) do
4:  xp <+ BasePathAt(p,l)
5: xzpg + State(H)
6:  xp, < ProjectFiber(xy)
7: ctr <0
8: while ctr < S« do
9: xp < SampleUniformNear(zp, ,dF,)
10: x <+ Lift(zp,xp)
11: if IsValid(x) then
12: if CheckMotion(z g, x) then
13: Gi + Gy U {2y, 2z}
14: UpdateHead(H, x)
15: steps < steps + 1
16: break
17: end if
18: end if
19: ctr<ctr+1
20: end while
21: if ctr > S« then
22: break
23: end if
24:  end while
25: return steps > 0

then sample for Syax rounds (Line 8) by sampling a fiber state
in the 0, proximity of the head fiber state (Line 9). We then lift
the base and fiber state (Line 10) and check if the state is valid
(Line 11). If the state is valid, we check if the motion from the
head to the new state is feasible (Lines 12—17). We terminate if
we could not expand the state (Lines 21-23) or reach the end.
We then return true if we made at least one step (Line 25).

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORTHEY AND TOUSSAINT: SECTION PATTERNS: EFFICIENTLY SOLVING NARROW PASSAGE PROBLEMS IN MULTILEVEL MOTION PLANNING 9

Algorithm 6: TunnelPattern(H)

Parameters: Base space step size dx, ,, fiber space step
size 0, , maximum samples Spax

1: (@gnds lgna) < Tunnel End(H)
2: xpy « State(H)
3: xp, < ProjectFiber(zp)
4:  dpesy + Distance(x g, TEnq)
5: 1< Location(H)
6: while ! < lg,q do
7: if CheckMotion(x g, xgnq) then
8: G eGkU{xH,xEnd}
9: UpdateHead(H, xgnq)
10: returntrue
11: end if
12: I+ 1+ (5in1
13:  xp < BasePathAt(p,l)
14: € < SmoothParameter(0,100x, ,, Smax)
15: ctr < 0
16: while ctr < S, do
17: xp + SampleUniformNear(xzp,e(ctr))
18: xp < SampleUniformNear(zp,,0F,)
19: x <+ Lift(xpg,xp)
20: if IsValid(z) then
21: d < Distance(x, Tgna)
22: if d < dpeqandCheckM otion(zp, x) then
23: Gk%GkU{xH,x}
24: Ty X
25: break
26: end if
27: end if
28: ctr+ctr+1
29: end while
30: if ctr > S then
31: returnfalse
32: end if
33: end while
34: return false

E. Tunnel Pattern

While the wriggle pattern locally explores the neighborhood
inside the path restriction, we often encounter situations where
we find it advantageous to momentarily step outside the path
restriction to overcome an infeasible region. From the perspec-
tive of the path restriction, we “tunnel” through the infeasible
region, which we therefore refer to as the tunnel pattern. With
the tunnel pattern, we assume to be located at a local minimum
p1 as shown in Fig. 8. To resolve this situation, we try to find
the next valid state po while keeping the fiber element constant.
We then try to connect p; to p, by sampling valid states in
a smoothly increasing neighborhood of the base space and a
constant neighborhood in fiber space. While ps is not reached,
we accept new states if they decrease the distance to ps.

We show the pseudocode in Algorithm 7. We first search for
a tunnel ending state xg,q at base path location lg,q (Line 1).
To find the tunnel ending, we step forward along the base path

1 1
25 A =
1 1
o e o
xa[rad] i
1 1
1 1
0.0 1 P1 P2
b4
-
1 1
1 1
1 1
25 &
1 |'
-2 0 2

X [m]

Fig. 8. Tunnel pattern to traverse a narrow passage: Given two feasible states
p1 and pa, we connect them by momentarily leaving the path restriction to
circumnavigate the infeasible region between them.

without changing the fiber until we find a valid state. We then try
to connect the head state z 7 to the tunnel ending state xg,q. We
use a while loop to move along the relevant base path segment
from the head location [ to the tunnel end location /g,q (Line 6).
We first check if we can connect the head state to the tunnel end
state (Line 7). If true, we add a new edge into the graph (Line
8), set the head to the tunnel ending state (Line 9), and return
true (Line 10). Otherwise, we step forward along the base path
with step size dx, , (Line 12) and query the base state at [ (Line
13). Instead of using the base state exactly, we use a smoothly
increasing neighborhood parameter e. The value of ¢ depends
on the counter CTR and smoothly interpolates between 0 and
100x, , using an Hermite polynomial [16] (Line 14). We then
attempt to make a step toward the tunnel ending for a maximum
of Smax attempts (Line 16). We do this by sampling a base space
element (Line 17) and a fiber element (Line 18). We then lift the
state (Line 19) and check for validity (Line 20). If the new state
is valid, its distance is closer to the tunnel ending and we can
connect it to the head state (Line 22), we add a new edge to the
graph (Line 23), set the head state to the new state (Line 24),
and continue forward (Line 25). If we fail to find a better sample
for Spmax attempts, we return false (Line 30-32). We also return
false if we reach the base path location lg,q without having a
valid connection (Line 34).

V. EVALUATIONS

To evaluate our pattern dance algorithm, we integrate it into
the multilevel planner QRRT, QRRT*, QMP, and QMP*, as
we discussed in Section IV-B. We then conduct two compar-
isons. First, we compare our planner to 36 available planning
algorithms in the OMPL [64] on 7 challenging environments
as shown in Fig. 9. For each algorithm, we use the abbreviated
name. For a full list of algorithms with full names and associated
publication, see [69] and the OMPL documentation [94]. Sec-
ond, we compare the multilevel planner with the pattern dance
algorithm to an older version of the same multilevel planner,
where we use a recursive sidestepping algorithm to quickly find
sections [69].

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10

(a) (b)

o\

Fig. 9.

(d (e)

___4

IEEE TRANSACTIONS ON ROBOTICS

(6] (2)

Scenarios for evaluations. The task is to move the robot from the start state (green) to the goal state (red). Top row (left to right): Bugtrap (6-dof), double

L shape (6-DoF) (goal configuration not shown) and chain egress (10-DoF). Bottom row: Overhand, underhand, single-finger, and double-finger pregrasp (each
37-DoF) (start configurations not shown). (a) 06D Bugtrap. (b) 06D Double Lshape. (c) 10D Chain Egress. (d) 37D ShadowHand Ball. (e) 37D ShadowHand

Metal. (f) 37D ShadowHand Mug. (g) 37D ShadowHand Scissor.

A. Evaluation Metric

To evaluate, we use a 8§ GB RAM 4-core 2.5 GHz laptop
running Ubuntu 16.04. For each experiment, we use a minimum
length cost (for planner which support cost functions) and we let
each planner run 10 times with a cutoff time limit of 60 seconds.
We then report on the average runtime over those 10 runs. We
show the results in Table II and Table III.

Concerning the results, there are two notes of caution. First,
we let each OMPL planner run out-of-the-box without any
parameter tuning. Further tuning of parameters could potentially
improve results significantly. Second, due to the high number of
planner and scenarios, we let each planner run only ten times
and take the average. However, averaging over ten runs might
exhibit more variance and thereby create more outliers.

B. Six-DoF Bugtrap

For the first evaluation, we use the Bugtrap scenario [55]
[see Fig. 9(a)]. The lowest runtime we found in the literature
is 22.17 s for a version of the selective-retraction-RRT [55],
[106] . However, this runtime is not directly comparable due to
different hardware, implementation, parameters, and operating
systems. To relax the problem, we use an inscribed sphere at the
center of the cylindrical bug as shown in Fig. 10(d) and (g).

We show the results of our evaluation in Table II. The best
performing planner is QMP (3rd planner in table) with 0.51 s

followed by QMP* (4) with 0.90 s and QRRT (1) with 4.45 s.
We also see good performance of the BITRRT (13) planner [44]
with 11.54 s. We note that the QRRT* (2) algorithm requires
24.87 s, which we believe to be caused by the additional burden
of rewiring the tree [69], [85].

C. Six-DoF Double L Shape

In the next evaluation, we like to show that the section patterns
are not specific to the cylindrical geometry, but are more widely
applicable to other rigid bodies. As demonstration, we use the
double L-shape scenario [98], where two L-shape bodies are
connected to each other as shown in Fig. 9(b). The task is to
move through a vertical wall with a small quadratic hole. We use
a two-level relaxation by using an inscribed sphere as shown in
Fig. 10(h) and (e). To make our method more robust against base
paths too close to obstacles, we increase the size of the sphere
slightly to increase clearance from obstacles.

Our evaluation shows that QMP performs best with 1.27 s
followed by QMP* (1.63 s), QRRT (1.86's), and QRRT* (2.00s).
The next best planner from OMPL is LBKPIECE1 (38) with
49.79 s.

D. Ten-DoF Chain Egress

In the third evaluation, we like to increase the complexity by
considering an articulated chain (10-DoF) as shown in Fig. 9(c).

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORTHEY AND TOUSSAINT: SECTION PATTERNS: EFFICIENTLY SOLVING NARROW PASSAGE PROBLEMS IN MULTILEVEL MOTION PLANNING 11

TABLE II
RUNTIME (S) OF MOTION PLANNER ON THE SCENARIOS FROM FIG. 9, EACH
AVERAGED OVER 10 RUNS WITH CUTOFF TIME LIMIT OF 60 S. AN ENTRY —
MEANS THAT PLANNER DOES NOT SUPPORT THE PARTICULAR STATE SPACE

- 5

= £ F 2

@ =) = = @

= 2 = = = =

2 ¢ § § § §

Runtime in seconds o, = - = = =

(10 run average) £ = = E E E E

¥ 2 £ £ £ £ &

= =] &} 7 7 ©n ©n

a a [=) [=) =) =) =)

E £ = & & & 8
1 QRRT (ours) 445 1.86 0.55 2.01 35.63 19.80 60.00
2 QRRT* (ours) 24.87 2.00 0.56 2535 43.95 60.00 60.00
3 QMP (ours) 051 127 191 086 1898 120 14.52
4 QMP* (ours) 090 1.63 729 086 194 1.63 37.27
5 RRT 60.00 60.00 49.77 60.00 60.00 60.00 60.00
6 RRTConnect 60.00 60.00 60.00 /.70 &76 57.38 60.00
7 RRT# 60.00 60.00 45.43 60.00 60.00 60.00 60.00
8 RRT* 60.00 60.00 51.74 60.00 60.00 60.00 60.00
9 RRTXstatic 60.00 60.00 50.49 60.00 60.00 60.00 60.00
10 LazyRRT 60.00 60.00 55.56 60.00 60.00 60.00 60.00
11 TRRT 60.00 60.00 0.8/ 42.08 60.00 60.00 60.00
12 BiTRRT 11.54 5430 <57 60.00 60.00 60.00 60.00
13 LBTRRT 60.00 60.00 60.00 60.00 60.00 60.00 60.00
14 RLRT 60.00 60.00 51.39 7068 28.47 60.00 60.00
15 BiRLRT 60.00 57.40 60.00 /.52 25.60 60.00 60.00
16 pRRT 60.00 60.00 49.41 60.00 60.00 60.00 60.00
17 FMT 60.00 60.00 60.00 60.00 60.00 60.00 60.00
18 BFMT 60.00 50.34 60.00 60.00 60.00 60.00 60.00
19 PRM 60.00 56.47 60.00 37.25 52.72 60.00 60.00
20 PRM* 60.00 57.80 60.00 34.24 50.04 60.00 60.00
21 LazyPRM 60.00 60.00 60.00 60.00 60.00 60.00 60.00
22 LazyPRM* 60.00 60.00 60.00 54.06 60.00 60.00 60.00
23 SPARS 60.00 59.73 60.00 60.00 60.00 60.00 60.00
24 SPARStwo 60.00 54.69 60.00 60.00 60.00 60.00 60.00
25 SST 60.00 60.00 60.00 60.00 60.00 60.00 60.00
26 EST 60.00 60.00 50.46 24.96 45.64 60.00 60.00
27 BIiEST 60.00 60.00 59.85 29.79 33.36 60.00 60.00
28 InformedRRT* 60.00 60.00 - 60.00 60.00 60.00 60.00
29 SORRT* 60.00 60.00 - 60.00 60.00 60.00 60.00
30 kBIT* 60.00 60.00 - 34.17 46.44 60.00 60.00
31 KkABIT* 60.00 60.00 - 50.28 44.56 60.00 60.00
32 AIT* 60.00 60.00 - 55.35 60.00 60.00 60.00
33 STRIDE 60.00 60.00 - 29.58 48.98 60.00 60.00
34 ProjEST 60.00 60.00 - 47.77 60.00 60.00 60.00
35 PDST 60.00 60.00 - 325 5442 60.00 60.00
36 KPIECEl 60.00 60.00 - 6.27 3248 60.00 60.00
37 BKPIECElL 60.00 60.00 - 52.35 60.00 60.00 60.00
38 LBKPIECEI1 60.00 49.79 - 60.00 60.00 60.00 60.00
39 SBL 60.00 50.30 - 60.00 60.00 60.00 60.00
40 CForest 60.00 60.00 - 60.00 60.00 60.00 60.00

A bold entry signifies the lowest runtime.

The task is to remove the chain from a pipe, a typical egress
scenario. Note that for such systems, we can find analytical
feasible path sections if we assume the base path of the head
to be curvature constrained [68]. However, we will not make
such assumption in this article.

TABLE III
COMPARISON OF MULTILEVEL PLANNERS WITH SIDESTEPPING [69] VERSUS
MULTILEVEL PLANNER WITH OUR PATTERN DANCE ALGORITHM

= 5

= £ ¥ £

o = = = 7]

= 2 = < = )

2 & § 5§ § &

ime i - o0 = = = =

Runtime in seconds (10 & - =2 = = = =

run average) 5 = £ S S S S

¥ 2 2 £ £ £ 2

= =] S} 0 @n @n 72}

a a a a a a a

o =4 = [y [ |y [y

— = - e en en e
QMP (ours) 051 127 191 086 18.98 1.20 14.52
QMP (SideStepping)  60.00 26.08 60.00 1.07 5537 6% 60.00
QMP* (ours) 090 1.63 729 0.86 194 1.63 37.27

QMP* (SideStepping) 60.00 30.11 60.00 1.76 60.00 12* 60.00

QRRT (ours) 445 186 055 2.01 35.63 19.80 60.00
QRRT (SideStepping) 60.00 27.72 9.14 18.65 60.00 44* 60.00

QRRT* (ours) 24.87 2.00 0.56 25.35 43.95 60.00 60.00
QRRT* (SideStepping) 60.00 60.00 16.42 42.33 54.05 48" 60.00

oo 3 A W W [N

4Taken from [69].

AR

)
.
g o
. L
@ () (i

Fig. 10. Multilevel abstraction using simplified models. (a) Shadow hand level
3 R37. (b) Shadow hand level 2 R'®. (c) Shadow hand level 1 R'3. (d) Bugtrap
level 2 SE(3). (e) Double Lshape level 2 SE(3). (f) Articulated chain level
2 SE(3) x RS, (g) Bugtrap level 1 R3. (h) Double Lshape level 1 R3. (i)
Articulated chain level 1 R3.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12

Algorithm 7: TripleStepPattern(H, x).
Parameters: Base space step size dx, ,

I: xpy < State(H)
2: | <+ Location(H)
3: xp < ProjectFiber(H)
4: xp, + ProjectFiber(x)
5. xp, + Steer(zp,,xF,,0.5) >Midpoint
6: whilel > dx, , do
7: [+ 1 — 5Xk—1
8:  xp ¢+ BasePathAt(p,l)
9: Tmid < Lift(acB, xpm)
10:  if IsValid(amq) then
11: a1 « Lift(xp,zp)
12: xo < Lift(rp,zr,)
13: if CheckMotion(xy,x2) then
14: if CheckMotion(x g, x1) then
15: if CheckMotion(xs,x) then
16: Gk<—G/€U{.’L‘H,$1}
17 Gi + G, U {l‘l,xg}
18: Gy (*GkU{IQ,I}
19: UpdateHead(h,x)
20: return true
21: end if
22: end if
23: break >End While Loop
24: end if
25: end if
26: end while
27: return false

To relax the problem, we use an inscribed sphere in the head
of the chain as shown in Fig. 10(i) and (f). As in the case of the
double L-shape, we slightly increase the size of the sphere to
make our method more robust against base paths too close to
obstacles.

In our evaluations, we show that QRRT performs best with
0.55 s followed by QRRT* (0.56 s). The next best planners
are TRRT (11) (0.81 s), QMP (1.91), BiTRRT (12) (4.57 s),
and QMP* with 7.29 s. Note that there are 12 OMPL planner
which cannot address this problem, because they do not support
compound state spaces or do not have dedicated projection
functions for such spaces.

E. Thirty-Seven-DoF Pregrasp

For the next evaluations, we compute (pre)grasping paths for
a ShadowHand mounted on a KUKA LWR robot. The tasks
are to compute an overhand grasp on a ball [see Fig. 9(d)], an
underhand grasp on a metal piece [see Fig. 9(e)], a single-finger
precision grasp on a mug [see Fig. 9(f)] and a double-finger
precision grasp on a scissor [see Fig. 9(g)]. The starting state
for all scenarios is an upright position of the arm with hand
being open, as shown in Fig. 10(a). To relax the problem, we
use a three-level abstraction by first removing three fingers
[see Fig. 10(b)] and subsequently removing the thumb [see
Fig. 10(c)] of the hand.

IEEE TRANSACTIONS ON ROBOTICS

Our evaluations show the following results. First, for the
Ball scenario, we see that QMP and QMP* perform best with
0.86 s. The next best planner is the OMPL planner BiRLRT
(15) [58] with 1.52 s, QRRT with 2.01 s and RRTConnect (6)
with 1.70 s. We note that also the planner PDST (35) [52], RLRT
(14) [58], and KPIECE1 (36) [93] perform competitively with
3.25, 3.68, and 6.27 s, respectively. The planner QRRT* does
not perform well on this problem instance with 25.35 s, due
to similar problems as on the Bugtrap scenario. Second, for
the underhand grasp on the metal piece, we see that QMP*
performs best with 1.94 s followed by RRTConnect (6) with
8.16 s and QMP with 18.98 s. We will address the discrepancy
between QMP and QMP* further in Section VI. Third, for the
single-finger precision grasp on the mug, we observe that QMP
performs best with 1.20 s followed by QMP* with 1.63 s. While
QRRT performs significantly worse (19.80 s), QRRT* was not
able to solve this problem (60.00 s). Fourth, for the double-finger
precision grasp on the scissor, we observe that QMP performs
best with 14.52 s followed by QMP* with 37.27 s. No other
planner is able to solve this problem. We will further discuss the
high runtime of both QMP and QMP* in detail in Section VI.

VI. LIMITATIONS AND DISCUSSION

While our evaluations support the usage of section patterns for
narrow passage planning problems, we also like to point out two
limitations of our approach. To each limitation, we will discuss
possible ways to eventually address and resolve the limitation.

A. Increased Runtime on Metal and Scissor Scenario

The first limitation is the increased runtime of our planner
on the 37D ShadowHand Scissor and the Metal scenario. We
distinguish between two subproblems. First, we observe that
QRRT and QRRT* have a runtime of 60 s on the Scissor
scenario. Both scenarios, however, are ingress scenarios, where
the planner needs to find a narrow passage on the base space
to enter the goal region, which is challenging for RRT-like
algorithms [49] and could be addressed using a bidirectional
version of QRRT.

Second, we observe that QMP and QMP* require 14.52 and
37.27 s to solve the Scissor scenario and that QMP requires
18.98 s to solve the Metal scenario. To explain this rather large
increase in runtime, we have a closer look at the individual
runtimes, which we show in Table IV. We can observe that both
planner exhibit one of two outputs. Either, they quickly return
a solution (usually less than 3 s, always less than 10 s) or they
fail and time out at 60 s (three/two times for QMP, zero/six
times for QMP*). To us, this indicates that both algorithms
might be sensitive to the base space path. If the base path is
not smooth enough, has kinks in it or is too close to obstacles,
then we might not be able to solve it with the pattern dance
algorithm. We could address this problem in the future by
either additional smoothing of the base space path [101], by
introducing conservative heuristics [13], or by switching to a
different relaxed model [92].

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORTHEY AND TOUSSAINT: SECTION PATTERNS: EFFICIENTLY SOLVING NARROW PASSAGE PROBLEMS IN MULTILEVEL MOTION PLANNING 13

TABLE IV
RUNTIME (S) FOR QMP AND QMP* ON EACH RUN. AVERAGE RUNTIMES ARE
18.98 5/1.94 s (QMP/QMP*) FOR THE METAL SCENARIOS AND 14.52 5/37.27 S
FOR THE SCISSOR SCENARIO

Run 1 2 3 4 5 6 7 8 9 10

37D ShadowHand Metal Scenario

QMP 153 1.I1 1.20 099 1.06 60.00 60.00 2.93 1.02 60.00
QMP* 098 1.15 093 123 273 1.13 1.03 7.61 098 1.65
37D ShadowHand Scissor Scenario
QMP 145 150 2.14 2.17 60.00 60.00 244 7.49 151 6.51
QMP* 60.00 60.00 2.22 60.00 6.27 60.00 60.00 60.00 1.92 2.30

*

Fig. 11. Limitations of section pattern approach. Base path does not admit a
feasible path section. See text for clarification.

B. Base Path Does Not Admit a Feasible Section

While all multilevel planner are probabilistically complete,
we often need the pattern dance algorithm to efficiently solve
a problem. However, we might encounter scenarios, where the
base path does not admit a feasible path section. Such a situation
is shown in Fig. 11. The scenario depicts an X-shaped robot,
which has to traverse a shape-sorter box with different openings,
which we relax by inscribing a sphere (right). Planning for the
spherical robot might produce a base path going through the
wrong hole. Such a base path does not admit a feasible path
section, meaning there are no paths along the path restriction
of the base path to traverse toward the goal. While multilevel
planner are probabilistically complete and would eventually
resolve the situation, we would not be able to solve this situation
using our pattern dance algorithm. To address such situations,
we could either compute several base paths [7], [33], [66], [70],
[75], [102], and consider them as a multiarm bandit problem
over path restrictions [50] or we could automatically choose
an alternative relaxation using either a meta-heuristic [9] or a
brute-force search [65].

VII. CONCLUSION

We developed the pattern dance algorithm, which took a
base space path as input and efficiently searched for a feasible
section in its path restriction, four dedicated section patterns,
which we named Manhattan, Wriggle, Tunnel, and Triple step.
We showed in evaluations, that our pattern dance algorithm
successfully coordinated section patterns and outperformed a

similar sidestepping algorithm [69]. We then showed that mul-
tilevel motion planning algorithms using our pattern dance
algorithm outperformed classical planner from the OMPL li-
brary on challenging narrow passage scenarios including the
Bugtrap, chain egress, and precision grasping. With some ex-
ceptions, we often observed runtime improvements by one to
two orders of magnitudes.

While we demonstrated to efficiently solve narrow passage
problems, we also pointed out two limitations. First, we observed
an increased runtime in some planning instances. We could
address this problem by either optimizing the base path [108], by
improved neighborhood modeling [51] or by learning the section
patterns themselves [42]. Second, we cannot handle cases where
the base path does not admit a path section. We could addressed
this problem by computing multiple base paths [66], [70], [102]
or using more informed graph restriction sampling methods [65].

Despite limitations, we believe to have contributed a novel
solution method which we can use to efficiently find sections
over base path restrictions. We believe our method to be a
promising tool to further probe, understand, and efficiently
exploit high-dimensional state spaces.

REFERENCES

[1] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev,
“Multi-heuristic A*,” Int. J. Robot. Res., vol. 35, no. 1-3, pp. 224-243,
2016.

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An obstacle-based PRM for 3D workspaces,” in Proc. Work-
shop Algorithmic Found. Robot., 1998, pp. 155-168.

[3] B.Baginski, “Local motion planning for manipulators based on shrinking
and growing geometry models,” in Proc. IEEE Int. Conf. Robot. Autom.,
1996, pp. 3303-3308.

[4] J.Basch, L.J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection proofs
for motion planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2001,
pp. 1765-1772.

[S] O. B. Bayazit, D. Xie, and N. M. Amato, “Iterative relaxation of con-
straints: a framework for improving automated motion planning,” in Proc.
IEEE Int. Conf. Intell. Robots Syst., 2005, pp. 3433-3440.

[6] K. E. Bekris and R. Shome, “Asymptotically optimal sampling-based
planners,” 2020, arXiv:1911.04044.

[7]1 S. Bhattacharya and R. Ghrist, “Path homotopy invariants and their
application to optimal trajectory planning,” Ann. Math. Artif. Intell.,
vol. 84, no. 3/4, pp. 139-160, 2018.

[8] R. Bohlin and L. E. Kavraki, “Path planning using lazy PRM,” in Proc.
IEEE Int. Conf. Robot. Autom., 2000, vol. 1, pp. 521-528.

[9] M. Brandao and I. Havoutis, “Learning sequences of approximations

for hierarchical motion planning,” in Proc. Int. Conf. Autom. Plan.

Scheduling, 2020, vol. 30, pp. 508-516.

T. Bretl, “Motion planning of multi-limbed robots subject to equilibrium

constraints: The free-climbing robot problem,” Int. J. Robot. Res., vol. 25,

no. 4, pp. 317-342, 2006.

O. Brock and L. E. Kavraki, “Decomposition-based motion planning:

A. framework for real-time motion planning in high-dimensional con-

figuration spaces,” in Proc. IEEE Int. Conf. Robot. Autom., 2001, vol. 2,

pp. 1469-1474.

H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta Numerica, vol. 13,

pp. 147-269, 2004.

I. Chatterjee, M. Likhachev, A. Khadke, and M. Veloso, “Speeding up

search-based motion planning via conservative heuristics,” in Proc. Int.

Conf. Autom. Plan. Scheduling, 2019, pp. 674-679.

J. Cortés, L. Jaillet, and T. Siméon, “Disassembly path planning for com-

plex articulated objects,” IEEE Trans. Robot., vol. 24, no. 2, pp. 475481,

Apr. 2008.

J. C. Culberson and J. Schaeffer, “Pattern databases,” Comput. Intell.,

vol. 14, no. 3, pp. 318-334, 1998.

[10]

[11]

[12]

[13]

[14]

[15]

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.



14

[16]

[17]

(18]

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

C. De Boor, K. Hollig, and M. Sabin, “High accuracy geometric hermite
interpolation,” Comput. Aided Geometric Des., Elsevier, vol. 4, no. 4, pp.
269-278, 1987.

J. Denny, R. Sandstrom, A. Bregger, and N. M. Amato, “Dynamic region-
biased rapidly-exploring random trees,” in Algorithmic Foundations of
Robotics XII. Berlin, Germany: Springer, 2020, pp. 640-655.

D. Driess, J.-S. Ha, and M. Toussaint, “Deep visual reasoning: Learning
to predict action sequences for task and motion planning from an initial
scene image,” in Proc. Robot.: Sci. Syst., 2020.

W. Du, S.-K. Kim, O. Salzman, and M. Likhachev, “Escaping local
minima in search-based planning using soft duplicate detection,” in Proc.
IEEE Int. Conf. Intell. Robots Syst., 2019, pp. 2365-2371.

W. Du, F. Islam, and M. Likhachev, “Multi-resolution A*,” 2020,
arXiv:2004.06684.

S.Edelkamp and S. Schroedl, Heuristic Search: Theory and Applications.
New York, NY, USA: Elsevier, 2011.

S. Edelkamp, P. Kissmann, and A. Torralba, “Symbolic A* search with
pattern databases and the merge-and-shrink abstraction,” in Proc. Eur.
Conf. Artif. Intell., 2012, pp. 306-311.

P. Ferbach and J. Barraquand, “A method of progressive constraints for
manipulation planning,” IEEE Trans. Robot., vol. 13, no. 4, pp. 473-485,
Aug. 1997.

D. Ferguson, M. Likhachev, and A. Stentz, “A guide to heuristic-based
path planning,” in Proc. Int. Conf. Autom. Plan. Scheduling, 2005, pp. 9—
18.

M. Fu, A. Kuntz, O. Salzman, and R. Alterovitz, “Toward asymptotically-
optimal inspection planning via efficient near-optimal graph search,” in
Proc. Robot.: Sci. Syst., Jun. 2019.

J. D. Gammell and M. P. Strub, “A survey of asymptotically optimal
sampling-based motion planning methods,” 2020, arXiv:2009.10484.

J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal sampling-based path planning focused via direct sampling of an
admissible ellipsoidal heuristic,” in Proc. IEEE Int. Conf. Intell. Robots
Syst., 2014, pp. 2997-3004.

J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch informed trees
(BIT*): Informed asymptotically optimal anytime search,” Int. J. Robot.
Res., vol. 39, no. 5, pp. 543-567, 2020.

M. B. Giles, “Multilevel Monte Carlo methods,” Acta Numerica, vol. 24,
pp. 259-328, 2015.

F. Glover and M. Laguna, “Tabu search,” in Handbook of Combinatorial
Optimization. Berlin, Germany: Springer, 1998, pp. 2093-2229.

K. Gochev, A. Safonova, and M. Likhachev, “Planning with adaptive
dimensionality for mobile manipulation,” in Proc. IEEE Int. Conf. Robot.
Autom., 2012, pp. 2944-2951.

M. X. Grey, A. D. Ames, and C. K. Liu, “Footstep and motion planning
in semi-unstructured environments using randomized possibility graphs,”
in Proc. IEEE Int. Conf. Robot. Autom., 2017, pp. 4747-4753.

J.-S. Ha, S.-S. Park, and H.-L. Choi, “Topology-guided path integral
approach for stochastic optimal control in cluttered environment,” IEEE
Robot. Auton. Syst., vol. 113, pp. 81-93, Mar. 2019.

N. Haghtalab, S. Mackenzie, A. D. Procaccia, O. Salzman, and S. S.
Srinivasa, “The provable virtue of laziness in motion planning,” Proc.
Twenty-Eighth Int. Joint Conf. Artif. Intell., IJCAI-19, 2019, pp. 6161—
6165, doi: 10.24963/ijcai.2019/855.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybern.,
vol. 4, no. 2, pp. 100107, Jul. 1968.

V. N. Hartmann, O. S. Oguz, D. Driess, M. Toussaint, and A. Menges,
“Robust task and motion planning for long-horizon architectural con-
struction planning,” in Proc. IEEE Int. Conf. Intell. Robots Syst.,
2020.

K. Hauser, “Fast interpolation and time-optimization with contact,” Int.
J. Robot. Res., vol. 33, no. 9, pp. 1231-1250, 2014.

B. Hou, S. Choudhury, G. Lee, A. Mandalika, and S. S. Srinivasa, “Pos-
terior sampling for anytime motion planning on graphs with expensive-
to-evaluate edges,” 2020, arXiv:2002.11 853.

D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow
passages with probabilistic roadmap planners,” in Proc. IEEE Int. Conf.
Robot. Autom., 2003, vol. 3, pp. 4420-4426.

S. Hu and N. R. Sturtevant, “Direction-optimizing breadth-first search
with external memory storage,” in Proc. Int. Joint Conf. Artif. Intell.,
2019, pp. 1258-1264.

D. Husemoller, Fibre Bundles, vol. 5. Berlin, Germany: Springer, 1966.

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

(501

[51]

[52]

[53]
[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

IEEE TRANSACTIONS ON ROBOTICS

B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in Proc. IEEE Int. Conf. Robot. Autom.,2018,
pp- 7087-7094.

L. Jaillet and J. M. Porta, “Path planning under kinematic constraints
by rapidly exploring manifolds,” /IEEE Trans. Robot., vol. 29, no. 1,
pp. 105-117, Feb. 2013.

L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning
on configuration-space costmaps,” IEEE Trans. Robot., vol. 26, no. 4,
pp. 635-646, Aug. 2010.

S. S. Joshi, S. Hutchinson, and P. Tsiotras, “Time-informed exploration
for robot motion planning,” 2020, arXiv:2004.05 241.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot., vol. 12, no. 4, pp. 566-580, Aug. 1996.
M. Kleinbort, O. Salzman, and D. Halperin, “Collision detection or
nearest-neighbor search? On the computational bottleneck in sampling-
based motion planning,” in Algorithmic Foundations of Robotics XII.
Berlin, Germany: Springer, 2020, pp. 624—639.

J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proc. IEEE Int. Conf. Robot. Autom.,
2000, vol. 2, pp. 995-1001.

H. Kurniawati and D. Hsu, “Workspace-based connectivity oracle: An
adaptive sampling strategy for PRM planning,” in Algorithmic Founda-
tion of Robotics VII. Berlin, Germany: Springer, 2008, pp. 35-51.

B. Lacevic and D. Osmankovic, “Improved C-space exploration and path
planning for robotic manipulators using distance information,” in Proc.
IEEE Int. Conf. Robot. Autom., 2020, pp. 1176-1182.

A.M. Ladd and L. E. Kavraki, “Fast tree-based exploration of state space
for robots with dynamics,” in Algorithmic Foundations of Robotics VI.
Berlin, Germany: Springer, 2004.

S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

J. M. Lee, Introduction to Smooth Manifolds. New York, NY, USA:
Springer, 2003.

J. Lee, O. Kwon, L. Zhang, and S.-E. Yoon, “SR-RRT: Selective
retraction-based RRT planner,” in Proc. IEEE Int. Conf. Robot. Autom.,
2012, pp. 2543-2550.

Z. Littlefield and K. E. Bekris, “Efficient and asymptotically optimal
kinodynamic motion planning via dominance-informed regions,” in Proc.
IEEE Int. Conf. Intell. Robots Syst., 2018, pp. 1-9.

T. Lozano-Perez, “A simple motion-planning algorithm for general
robot manipulators,” IEEE J. Robot. Autom., vol. 3, no. 3, pp. 224-238,
Jun. 1987.

R. Luna, M. Moll, J. Badger, and L. E. Kavraki, “A scalable motion
planner for high-dimensional kinematic systems,” Int. J. Robot. Res.,
vol. 39, no. 4, pp. 361-388, 2020.

Y. Luo, H. Bai, D. Hsu, and W. S. Lee, “Importance sampling for
online planning under uncertainty,” Int. J. Robot. Res., vol. 38, no. 2-3,
pp. 162-181, 2019.

J. Mainprice, N. Ratliff, M. Toussaint, and S. Schaal, “An interior point
method solving motion planning problems with narrow passages,” in
Proc. IEEE Int. Conf. Robot Human Interactive Commun., 2020, pp. 547—
552.

M. Manak, “Voronoi-based detection of pockets in proteins defined
by large and small probes,” J. Comput. Chem., vol. 40, no. 19,
pp. 1758-1771, 2019.

A.Mandalika, S. Choudhury, O. Salzman, and S. Srinivasa, “Generalized
lazy search for robot motion planning: Interleaving search and edge
evaluation via event-based toggles,” in Proc. Int. Conf. Autom. Plan.
Scheduling, 2019, pp. 745-753.

Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence
using sampling and alpha shapes,” in Proc. IEEE Int. Conf. Robot. Autom.,
2012, pp. 2563-2569.

M. Moll, I. A. Sucan, and L. E. Kavraki, “Benchmarking motion planning
algorithms: An extensible infrastructure for analysis and visualization,”
IEEE Robot. Autom. Mag., vol. 22, no. 3, pp. 96-102, Sep. 2015.

A. Orthey and M. Toussaint, “Rapidly-exploring quotient-space trees:
Motion planning using sequential simplifications,” Int. Symp. Robot. Res.,
2019.

A. Orthey and M. Toussaint, “Visualizing local minima in multi-robot
motion planning using multilevel morse theory,” in Proc. Workshop
Algorithmic Found. Robot., 2020.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.


https://dx.doi.org/10.24963/ijcai.2019/855

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ORTHEY AND TOUSSAINT: SECTION PATTERNS: EFFICIENTLY SOLVING NARROW PASSAGE PROBLEMS IN MULTILEVEL MOTION PLANNING 15
[67] A. Orthey, A. Escande, and E. Yoshida, “Quotient-space motion plan- [88] S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars, “Multilevel
ning,” in Proc. IEEE Int. Conf. Intell. Robots Syst., 2018, pp. 8089-8096. path planning for nonholonomic robots using semiholonomic subsys-

[68] A. Orthey, O. Roussel, O. Stasse, and M. Taix, “Motion planning in tems,” Int. J. Robot. Res., vol. 17, no. 8, pp. 840-857, 1998.
irreducible path spaces,” IEEE Robot. Auton. Syst., vol. 109, pp. 97-108, [89] A. Sintov, S. Macenski, A. Borum, and T. Bretl, “Motion planning for
Nov. 2018. dual-arm manipulation of elastic rods,” IEEE Robot. Autom. Lett., vol. 5,

[69] A. Orthey, S. Akbar, and M. Toussaint, “Multilevel motion planning: A. no. 4, pp. 6065-6072, Oct. 2020.
fiber bundle formulation,” 2020, arXiv:2007.09435 [cs.RO]. [90] N. E. Steenrod, The Topology of Fibre Bundles. Princeton, NJ, USA:

[70] T. Osa, “Multimodal trajectory optimization for motion planning,” Int. J. Princeton Univ. Press, 1951.

Robot. Res., vol. 39, no. 8, pp. 983—-1001, 2020. [91] M. P. Strub and J. D. Gammell, “Adaptively informed trees (AIT*): Fast

[71] L. Palmieri, S. Koenig, and K. O. Arras, “RRT-based nonholonomic asymptotically optimal path planning through adaptive heuristics,” in
motion planning using any-angle path biasing,” in Proc. IEEE Int. Conf. Proc. IEEE Int. Conf. Robot. Autom., 2020, pp. 3191-3198.

Robot. Autom., 2016, pp. 2775-2781. [92] B. M. K. Styler and R. Simmons, “Plan-time multi-model switching for

[72] J. Pearl, “Heuristics: Intelligent search strategies for computer problem motion planning,” in Proc. Int. Conf. Autom. Plan. Scheduling, 2017.
solving,” Reading, MA, USA: Addision Wesley, 1984. [93] I.A.SucanandL.E. Kavraki, “A sampling-based tree planner for systems

[73] S. M. Persson and I. Sharf, “Sampling-based A* algorithm for robot with complex dynamics,” IEEE Trans. Robot.,vol.28,no. 1,pp. 116-131,
path-planning,” Int. J. Robot. Res., vol. 33, no. 13, pp. 1683-1708, 2014. Feb. 2012.

[74] E. Plaku, L. E. Kavraki, and M. Y. Vardi, “Discrete search leading con- [94] 1. A.Sucan, M. Moll, and L. Kavraki, “The open motion planning library,”
tinuous exploration for kinodynamic motion planning,” in Proc. Robot.: IEEE Robot. Autom. Mag., vol. 19, no. 4, pp. 72-82, Dec. 2012.

Sci. Syst., 2007, pp. 326-333. [95] J. Szkandera, 1. Kolingerovd, and M. Marnidk, “Narrow passage problem

[75] F. T. Pokorny, M. Hawasly, and S. Ramamoorthy, “Topological trajec- solution for motion planning,” in Proc. Int. Conf. Comput. Sci.,2020,
tory classification with filtrations of simplicial complexes and persistent pp. 459-470.
homology,” Int. J. Robot. Res., vol. 35, no. 1-3, pp. 204-223, 2016. [96] S. Tonneau, A. D. Prete, J. Pettré, C. Park, D. Manocha, and N. Mansard,

[76] A.H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, “Motion planning “An efficient acyclic contact planner for multiped robots,” IEEE Trans.
networks: Bridging the gap between learning-based and classical motion Robot., vol. 34, no. 3, pp. 586-601, Jun. 2018.
planners,” IEEE Trans. Robot., vol. 37, no. 1, pp. 48-66, Feb. 2021. [97] D.Uwacu, R. Rex, B. Wang, S. Thomas, and N. M. Amato, “Annotated-

[77] W. Reid, R. Fitch, A. H. Goktogan, and S. Sukkarieh, “Sampling-based skeleton biased motion planning for faster relevant region discovery,”
hierarchical motion planning for a reconfigurable wheel-on-leg planetary 2020, arXiv:2003.02176.
analogue exploration rover,” J. Field Robot., vol. 37, no. 5, pp. 786-811, [98] J. P. Van denBerg and M. H.Overmars, “Using workspace information
2019. as a guide to non-uniform sampling in probabilistic roadmap planners,”

[78] W.Reid, R. Fitch, A. H. Goktoggan, and S. Sukkarieh, “Motion planning Int. J. Robot. Res., vol. 24, no. 12, pp. 1055-1071, 2005.
for reconfigurable mobile robots using hierarchical fast marching trees,” [99] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Free space
in Algorithmic Foundations of Robotics XII. Berlin, Germany: Springer, of rigid objects: Caging, path non-existence, and narrow passage detec-
2020, pp. 656-671. tion,” in International Journal of Robotics Research. Berlin, Germany:

[79] M. Rickert, A. Sieverling, and O. Brock, “Balancing exploration and Springer, 2020.
exploitation in sampling-based motion planning,” IEEE Trans. Robot., ~ [100] S. Vats, V. Narayanan, and M. Likhachev, “Learning to avoid local
vol. 30, no. 6, pp. 1305-1317, Dec. 2014. minima in planning for static environments,” in Proc. Int. Conf. Autom.

[80] J. Rowekdmper, G. Tipaldi, and W. Burgard, “Learning to guide random Plan. Scheduling, 2017, pp. 572-576.
tree planners in high dimensional spaces,” in Proc. IEEE Int. Conf. Intell. [101] E. Vidal, M. Moll, N. Palomeras, J. D. Herndndez, M. Carreras, and L. E.
Robots Syst., 2013, pp. 1752-1757. Kavraki, “Online multilayered motion planning with dynamic constraints

[81] M. Saha, J.-C. Latombe, Y.-C. Chang, and F. Prinz, “Finding narrow for autonomous underwater vehicles,” in Proc. IEEE Int. Conf. Robot.
passages with probabilistic roadmaps: The small-step retraction method,” Autom., 2019, pp. 8936-8942.

Auton. Robots, vol. 19, no. 3, pp. 301-319, 2005. [102] V. Vondsek and R. Pénigka, “Sampling-based motion planning of 3D

[82] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “An admissible solid objects guided by multiple approximate solutions,” in Proc. IEEE
heuristic to improve convergence in kinodynamic planners using motion Int. Conf. Intell. Robots Syst., 2019, pp. 1480-1487.
primitives,” IEEE Control Systems Letters, vol. 4, no. 1, pp. 175-180,  [103] Y. Yang and O. Brock, “Efficient motion planning based on disas-
Jan. 2020. sembly,” in Proc. Robot.: Sci. Syst., Jun. 2005. [Online]. Available:

[83] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini, “Sampling-based http://roboticsproceedings.org/rss01/p14.html
optimal kinodynamic planning with motion primitives,” Auton. Robots, ~ [104] A. Yershova and S. M. LaValle, “Motion planning for highly constrained
vol. 43, no. 7, pp. 1715-1732, 2019. spaces,” Robot Motion Control, vol. 396, pp. 297-306, 2009.

[84] O. Salzman, “Sampling-based robot motion planning,” Commun. ACM,  [105] E. Yoshida, “Humanoid motion planning using multi-level DoF exploita-
vol. 62, no. 10, pp. 54-63, 2019. tion based on randomized method,” in Proc. IEEE Int. Conf. Intell. Robots

[85] O. Salzman and D. Halperin, “Asymptotically near-optimal RRT for Syst., 2005, pp. 3378-3383.
fast, high-quality motion planning,” IEEE Trans. Robot., vol. 32, no. 3, [106] L.Zhang and D. Manocha, “An efficient retraction-based RRT planner,”
pp. 473483, Jun. 2016. in Proc. IEEE Int. Conf. Robot. Autom., 2008, pp. 3743-3750.

[86] O. Salzman, M. Hemmer, and D. Halperin, “On the power of manifold  [107] L. Zhang, Y. J. Kim, and D. Manocha, “A simple path non-existence
samples in exploring configuration spaces and the dimensionality of algorithm using c-obstacle query,” in Algorithmic Foundation of Robotics
narrow passages,” in Algorithmic Foundations of Robotics X, E. Frazzoli, VII. Berlin, Germany: Springer, 2008, pp. 269-284.

T. Lozano-Perez, N. Roy, and D. Rus, Eds. Berlin, Germany: Springer, [108] L. Zhang, J. Pan, and D. Manocha, “Motion planning of human-like

[87]

2013, pp. 313-329.
A. Schweikard and F. Schwarzer, “Detecting geometric infeasibility,”
Artif. Intell., vol. 105, no. 1/2, pp. 139-159, 1998.

robots using constrained coordination,” in Proc. IEEE Int. Conf. Hu-
manoid Robots, 2009, pp. 188-195.

Authorized licensed use limited to: UNIVERSITAETSBIBL STUTTGART. Downloaded on August 03,2021 at 09:01:41 UTC from IEEE Xplore. Restrictions apply.


http://roboticsproceedings.org/rss01/p14.html

