
Co-Optimizing Robot, Environment, and Tool Design via Joint
Manipulation Planning

Marc Toussaint1,2, Jung-Su Ha2,1, Ozgur S. Oguz3,2

Abstract— Existing work on sequential manipulation plan-
ning and trajectory optimization typically assumes the robot,
environment and tools to be given. However, in particular in
industrial applications, it is highly interesting to ask, what
would be an optimal robot design, tool shape, or robot station
geometry for a particular ensemble of manipulation tasks.
To tackle this problem we propose a formulation to jointly
optimize over static design parameters and the sequential
manipulation trajectory. We can include optimization objectives
such as penalizing velocities (path length) and joint torques.
Our evaluations show that design optimization can significantly
improve on such metrics. For instance, in a wrench tool
demonstration scenario we show that the shape of the wrench
tool as well as design of the robot can be optimized to allow
for exerting a necessary external torque with minimal effort.

I. INTRODUCTION

Trajectory optimization, force-based manipulation plan-
ning, and combined task and motion planning are typically
addressed for a fixed robotic hardware. However, the design
and kinematics of the robotic system clearly has a strong
influence on the quality or feasibility of optimized trajecto-
ries and manipulation plans. The importance of the hardware
design has been discussed for a long time, including the
discussion of funnels [1], [2] that can be created by clever
hardware design, morphological computation [3]–[5] that is
realized implicitly by compliant and soft hardware when
interpreted as integral part of the control strategy, and em-
bodiment [6]. So far, however, these considerations remained
largely separate from the methods developed for trajectory
optimization.

Further, tool use planning has previously been considered
as an instance of TAMP and force-based manipulation plan-
ning [7]. But tool creation or tool design that is co-optimized
with the task has received only very little attention [8]–[10].

In this paper we consider the problem of co-optimizing
robot, environment, or tool design parameters jointly with
sequential manipulation trajectories, for objectives such as
control costs or torque loads. Previous work [11], [12] con-
sidered similar formulations but assumed given endeffector
waypoints or trajectories, while we propose a general con-
strained optimization formulation to include sequential ma-
nipulation and environment torque objectives. By including a
representative ensemble of task instances in the optimization

This research has been supported by the German Research Foundation
(DFG) under Germany’s Excellence Strategy – EXC 2120/1 – 390831618,
and via the Max Planck Fellowship (MPI for Intelligent Systems).

1Learning & Intelligent Systems Lab, TU Berlin, Germany
2Max Planck Institute for Intelligent Systems, Germany
3Machine Learning & Robotics Lab, University of Stuttgart, Germany

(a) (b)

(c) (d)

Fig. 1: (a) A bin picking and re-sorting robot station
presented by Knapp/Covariant.AI for logistics applications1.
(b) Our analogous re-sorting demonstration scenario (in
non-deformed design). (c) Our wrench tool scenario (non-
deformed) where the robot needs to exert a constant torque
on the bolt during interaction. In both scenarios the pick and
place location of the object and bolt location, respectively,
are randomized to yield the ensemble of K scenarios. (d)
An example deformed-design for the wrench tool scenario.

we can co-optimize the design parameters with the solutions
to sequential manipulation problems.

Industrial applications are a core motivation for this work:
Robots in production lines, bin picking, or logistics re-sorting
applications typically run on the same task ensemble for their
whole lifetime. The design of the overall robot station (in-
cluding the mounting and tilt of the robot, or of bins, relative
to the production line) as well as the design of the robot
itself (its link transformations, and thereby its kinematics and
joint axes) could be tailored to a particular task ensemble to
yield higher speed and efficiency. However, default industrial
robotics hardware is dominated by stereotypical designs with
orthogonal consecutive joint axes, see Fig. 2. These designs
have been long proven, yield a simple kinematic description
and a good general-purpose workspace. But they are far from
optimal w.r.t. typical trajectory ensembles.

Our core contribution is a formulation to jointly optimize
over sequential manipulation trajectories and static design
parameters of the robot, the environment, and tools, for
objectives such as path velocities, accelerations and joint
torques. To bring this to application we further propose a spe-



Fig. 2: Typical robot designs are dominated by orthogonal
consecutive joint axes, non-optimized to particular tasks.

cific parameterization of link deformations, model pick-and-
place and wrench tool constraints in a differentiable manner,
and introduce wrench decision variables and constraints to
allow us to evaluate and/or penalize forces and torques in
the structure. We demonstrate the approach first on a bin
picking and re-sorting industrial application, analogous to the
one demonstrated by Knapp/Covariant.AI, see Fig. 1(a,b).
We then consider a wrench tool scenario. Our evaluations
show that design optimization can significantly improve the
performance metrics.

II. RELATED WORK

a) Co-optimizing Design Parameters with Trajectories:
Most closely related to our approach is the work [12], which
equally co-optimizes design parameters with joint trajecto-
ries, but assumes endeffector trajectories given and takes
the alternating optimization approach, as well as the work
[11], which leverages IK methods to co-optimize manipulator
designs (in particular link lengths) for given target waypoints
in endeffector space. Our approach leverages a general con-
straint optimization formulation of sequential manipulation
that can also represent pick-and-place problems as well as
include objectives on force-exchanges with the environment.
Further, our approach optimizes design parameters w.r.t. an
ensemble representation of the task variety.

b) Tool Use, Design, and Creation: A highly interest-
ing related line of research concerns tool use and design. [13]
proposes methods to co-optimize the shape of a throwing tool
with its motion to maximize effectiveness, [10] presents an
extensive treatment of tool use planning, [14] considers tool
selection and substitution, and [15] tool creation based on
combining parts. Further [8] considers learning and reason-
ing for tool creation on the symbolic level. Our work instead
integrates the problem of tool design in the general problem
of sequential manipulation planning on the motion and force
level.

c) Combined Task and Motion Planning: By planning
high-level action sequences along with feasible motion paths
to realize those actions, TAMP formulations provide effective
methods to solve sequential manipulation problems. The
class of problems tackled by TAMP methods include pick-
and-place planning [16], [17], manipulation planning [18],
tool-use [19], navigation among obstacles [20], and rear-
rangement planning [21]. Classical AI search algorithms for
task planning are combined with either sampling-based [17]
or optimization-based methods [19] for motion planning to

1https://www.youtube.com/watch?v=ApiQwHlxdmA

tackle those broad set of problems. In this paper we include
also the co-optimization of environment and robot design
parameters along with the robot motion plans for executing
an ensemble of sequential manipulation tasks.

III. CO-OPTIMIZING DESIGN, MOTION, AND
MANIPULATION PLANS

A. General Optimization Formulation

We formulate the problem as a nonlinear mathematical
program (NLP) over a path in configuration space that
spans the full ensemble of K sample tasks. Specifically, we
consider the path x : [0,KT ]→ X, where each time interval
[kT, (k + 1)T ] of duration T performs the kth sample task.
The configuration space X ⊂ Rn × RD × SE(3)m × R6·nF

includes the following degrees-of-freedom (dofs):
• the n robot joint angles q ∈ Rn subject to control,
• D design parameters δ ∈ RD explained in more detail

below,
• the (relative) poses of m rigid objects (SE(3)m), where
m may change from time slice to time slice depending
on how objects are manipulated,

• the 6D wrenches f ∈ R6·nF between nF pairs of objects
or links.

As our solver discretizes time we directly formulate the
NLP using a discrete time notation. Let T be an integer
(the number of time slices per task phase), and the path
x : {1, ..,KT} → X is discretized in time slices xt ∈ X for
t ∈ {1, ..,KT}. We solve an NLP of the generic form

min
x

KT∑
t=1

ft(x̄t) (1)

s.t. ∀t : ht(x̄t) = 0, gt(x̄t) ≤ 0, (2)

where x̄t is a tuple of configurations on which the cost,
equality and inequality objectives depend. The solver can
handle arbitrary tuples of configurations, but in our appli-
cations we assume x̄t = (xt−2, xt−1, xt), which means that
objectives may depend on up to three consecutive time slices.
Specifically, objectives can be formulated in terms of any
features φ that depend on one time slice φt ≡ φ(xt), or
finite-difference velocities of features φ̇t ≡ (φt−φt-1)/τt, or
finite-difference accelerations of features φ̈t ≡ (φ̇t−φ̇t-1)/τt,
where τt is the time interval between two time slice t-1 and t.
Our framework generally requires that the path Jacobian ∂φt

∂x
of all features (w.r.t. the full path) are sparse. This is ensured
in our case as they depend only on consecutive tuples x̄t
which, however, include a global shared design parameter δ
which makes Jacobians non-banded but still sparse.

The following section first details the design parameters.
Next, we will individually detail all cost, equality and
inequality objectives we use to formulate pick-and-place con-
straints, collision constraints, control costs, force constraints
and torque costs.

B. Deformations and Design Parameters δ

1) Shared decision variables and sparse path Jacobians:
The design parameters δ are the core interest of this paper. As

https://www.youtube.com/watch?v=ApiQwHlxdmA


they represent static hardware parameters, they cannot vary
over time therefore need to be constant throughout the path.
We nevertheless treat them analogously to robot joint angles
q to enable their co-optimization with all other decision
variables. There are several options to ensure constant δ
throughout the path when formulating the mathematical
program: We could impose local equality constraints on δ
at two consecutive time slices. This would ensure that all
objectives of the mathematical program are in fact temporally
local, the resulting Hessian of all objectives would be band
diagonal, and Newton steps could be computed in time linear
in KT – see [22] for a detailed discussion of exploiting
temporally local (“k-order”) structure of path optimization
problems.

However, we decided for a formulation of the NLP that
breaks this temporal locality: We follow a true parameter
sharing approach where the design parameters δ in each time
slice are identical to the very first time slice, leading to only a
single decision variable in the mathematical program. Con-
sequently, the objectives (e.g., a robot endeffector position
or joint torque) of the NLP now depend on both, temporally
local variables such as the robot poses q and forces f , as
well as the design parameter δ in the first time slice. To
cope with this non-local structure of the NLP we use sparse
representations of all path Jacobians, also leading to a sparse
Hessian. Exploiting efficient sparse solvers (we use eigen’s
Simplicial LDLT) we can almost retain the linear complexity
of computing Newton steps.

2) Link Deformations: Our basic approach to parameter-
ize design is to introduce additional dofs for pose transforma-
tions relative to the original design. We first describe this in
the context of deformations of robot links. Pose alterations of
other aspects of the environment can be handled analogously.

Consider a link transformation Qi ∈ SE(3) in the robot’s
kinematic tree. Such a transformation Qi reflects the rigid
hardware link and transforms from the coordinate frame
where the link is mounted (the output coordinate frame of the
previous motor) to the coordinate frame where the next motor
is mounted. We introduce a link deformation δi ∈ SE(3)
such that after the deformation the link transformation is

Q′i = Qi ◦ δi ,

i.e., the deformation is introduced between the old link and
the next motor. It can thereby elongate, shorten or sheer the
old link shape, as well as introduce a rotation of the next
motor axes by twisting the link shape.

We generally parameterize deformations δi using 7D
position-quaternion coordinates, while adding also a quater-
nion normalization equality constraint to the mathemat-
ical program. We always impose limits on the defor-
mations, e.g., for panda link deformations we impose
upper limits [.05, .05, .05, 1.05, .3, .3, .3] and lower limits
[−.05,−.05,−.05, .8,−.3,−.3,−.3] on the 7D position-
quaternion deformation coordinates. This means ±5cm trans-
lations, while the amount of rotation is limited by the ±.3
limits on the xyz-coordinates of the respective quaternion,
where .3 corresponds to ∼ 35◦ around each axis.

Fig. 3: Illustration of the original Panda design, and a de-
formed design. Deformation transformations are introduced
before each joint. The transformations are illustrated via a
simple linear warping of the mesh models of the preceding
link. The resulting deformations often lead to highly non-
orthogonal joint axes.

We make the simplifying assumption that these deforma-
tions do not alter the total mass or inertia for the link.

Fig. 3 illustrates a deformation of the Panda arm links
optimized for minimal torques. For the purpose of this illus-
tration, the mesh models have been linearly warped to reflect
the deformation. Of course, in practice the specific shape
designs for the deformed links could be chosen differently
depending on what is cheapest and easiest to manufacture.
The naively warped mesh models are for illustration purpose
only.

For completeness we describe this linear warping of a
mesh model: For every link we identify a central start point
a (center of the mount coordinate frame) and central end
point b (center of the output coordinate frame). It holds
b = Q-1a. After the deformation we want a′ = a while
b′ = (Q ◦ δ)-1a = δ-1b. For every vertex v of the mesh
model we identify the linear interpolation coefficient α =
(v−a)>(b−a)

(b−a)2 , which is 0 for v = a and 1 for v = b. We then
transform each mesh vertex according to v′ = (αδ̇-1)v, where
αδ̇-1 is shorthand for the interpolated transformation, more
rigorously defined via the exponential map of the respective
Lie group.

We can apply the same scheme also for parameterizing
the mounting of objects in the environment, or for the
deformation of a tool.

C. Manipulation Constraints

1) Pick-and-Place Constraints: For consecutive pick-and-
place tasks, we assume that the travel from pick-to-place
takes the same number of time slices as from place-to-pick.
On a pick time slice we impose the constraints

0 = φendeff
pos − φpickPoint

pos (3)

0 = φendeff
z − φobject

z , (4)

where φpos ∈ R3 is the 3D position of the endeffector, or
the given desired object pick point in world coordinates, and
φz ∈ R3 is the z-axis of the endeffector or object in world
coordinates. The latter equality means that the endeffector
tool aligns normally with the object.



We also impose zero endeffector velocity at the pick time

0 = φ̇endeff
pos , (5)

as well as a constant deceleration/acceleration during a time
interval before and after the pick, i.e., down and up motions,

0 = φ̈endeff
pos − aφobject

z . (6)

This means that the endeffector position has a constant
deceleration/acceleration exactly in the direction of the object
normal, scaled by a positive number a (which we chose
a = 0.1m/sec2 in the experiments). We impose this during a
time interval ranging 10% of the pick-to-place interval before
and after the pick time slice.

The place constraints are modeled analogously as

0 = φendeff
pos − φdropPoint

pos (7)

0 = φendeff
z − φworld

z , (8)

where the drop point is given by the task, and the endeffector
is aligned vertically. As before, we impose zero endeffector
velocity at the place time slice, and constant vertical decel-
eration/acceleration around it.

Note that the pick is under-constrained: The orientation of
the object fixation is a decision variable. If we had less con-
straints on the pick point (e.g., constrain it only to be within
a region), also the relative translation between endeffector
and object is a free decision variable of the optimization
problem. We handle this as in previous work [7], [19], [23]:
We introduce respective dofs in those time slices where the
object is in hand, to represent the relative pose of the object.
Kinematically, the object is attached to the endeffector in
those time slices. Assuming a stable grip, we constrain
this relative pose to be equal throughout the handling by
imposing a zero relative pose velocity (in position/quaternion
space). In addition we need to add boundary constraints,
ensuring that this relative pose is consistent with the initial
pick pose, as well as the final drop pose, now by imposing
zero absolute pose velocity at the kinematic switches.

2) Collision Constraints: To avoid collisions during ma-
nipulation we impose inequality constraints on the signed
negative distance between pairs (o1, o2) of convex shapes,

φo1o2negDist ≤ 0 . (9)

3) Control Costs: We can generally penalize sum-of-
squares of joint accelerations q̈ or any quantity linear in q̈,
which includes M -1q̈−F (where we assume M and F locally
constant, neglecting their Jacobians w.r.t. q). In our experi-
ments we chose a constant diagonal M -1 penalizing joint
accelerations. As for φ̈, we define q̈ via finite differencing
(qt + qt-2 − 2qt-1)/τ2t in terms of the discrete time slices.
Further, to explicitly aim for shorter paths, we also penalize
the sum-of-squares of joint velocities q̇.

D. Torque/Force Constraints and Costs

There are various approaches to evaluate forces and
torques for a given motion path. First, without introducing

further decision variables, we could use the standard robot
inverse dynamics equation

θ = M(q, δ)q̈ + C(q̇, q, δ) + F (q, δ) (10)

to compute torques for each joint. In our framework we need
these torques to be fully differentiable w.r.t. all parameters,
which in this case means that we would have to differentiate
the inertia matrix M , Coriolis terms C, and gravity term F
also w.r.t. the design parameters δ.

In manipulation settings we often have force loops, mean-
ing that the robot endeffector exchanges forces with the
environment. In this case it is natural to introduce additional
decision variables to the mathematical program to represent
this force exchange with the environment [7], and impose
constraints to ensure consistency of the exchanged forces
with object accelerations (the Newton-Euler equations). We
do the same to represent the wrench exchanges between two
consecutive robot links. In that way, the solver will optimize
for the correct joint torques rather than using the analytical
inverse dynamics equation to compute them. This approach
is of course less efficient, but it saves us from implementing
specialized differentiation of the M,C,F w.r.t. δ.

Specifically, we introduce wrench exchange variables f ∈
R6·F in each time slice, between F pairs of links or objects.
For each rigid object or link not mounted to the ground we
impose the Newton-Euler constraint v̇

ẇ

 + g −M -1F = 0 , (11)

with the object’s linear and angular velocity (v, w), accel-
eration (v̇, ẇ), the gravity vector g ∈ R6, and the object’s
inertia matrix M ∈ R6×6.

So far, this only computes the wrenches without imposing
costs and, in fact, without influencing the optimization of the
path or design parameters δ. To penalize torques around a
joint axes we introduce sum-of-squares costs〈

fj , φ
joint j
screw

〉2
, (12)

where fj is the wrench at joint j, and φscrew is the joint
axis (actually its 6D screw vector, handling also translational
joints), which we can easily differentiate.

IV. EXPERIMENTS

We evaluate the approach on the two scenarios illustrated
in Fig. 1(b,c). In the re-sorting scenarios the robot with
suction cup picks objects placed randomly in the center box
and places them at random destinations in either the left or
right side box. In the wrench tool scenario, the robot aligns
the wrench fork with the bolt head then exerts a constant
torque while turning it, after which it does the same for the
next randomly placed bolt.

The source code for the described methods and to re-
produce the following evaluations is available here2. The
accompanying video3 illustrates the optimized sequential ma-
nipulation trajectories with and without design optimization.

2https://github.com/MarcToussaint/21-ICRA-DesignOpt
3https://youtu.be/9ihdtMJvcQk

https://github.com/MarcToussaint/21-ICRA-DesignOpt
https://youtu.be/9ihdtMJvcQk


A. Baselines & Metrics

We compare three methods to generate sequential manip-
ulation solutions in these scenarios:

• BASELINE: We use our solver to find a full sequential
manipulation path fulfilling the task, but (1) do not allow
for deformations of the designs, and (2) only optimize
for control costs (path accelerations). Forces and joint
torques are not objectives. The respective mathematical
program includes wrench decision variables and respec-
tive constraints, but only to compute and report them,
not to penalize them.

• DESIGNOPT: As the BASELINE, but allowing for de-
formations of the designs.

• DESIGNOPTTORQUE: Our full approach, which in-
cludes also sum-of-square penalization of joint torques
in the co-optimization of motion and design deforma-
tions.

Our evaluations focus on three metrics:

• Torques: The sum-of-squares of joint torques through-
out the whole manipulation sequences.

• Vel: The sum-of-squares joint velocities throughout the
whole manipulation sequences, which relates to path
length and maximal execution speed when hardware
imposes velocity limits on the joints.

• Acc: The sum-of-squares joint accelerations throughout
the whole manipulation sequences.

Each single run computes optimal sequential manipula-
tions for a K ensemble of randomized tasks. The K = 15
ensembles ensure that the designs do not collapse to be
optimal for only a single positioning of objects, but rather
for a whole variety of tasks. We repeat each run 15 times
with varying random seeds (i.e., for 15 different random
ensembles) to allow us to report mean metrics as well as
standard deviations.

Each single run optimizes over up to about 50 000 decision
variables (dimensionality of x) and takes 10 to 30 minutes
on a single CPU, except for BASELINE, which requires 1 to
5 minutes.

B. Re-sorting Scenario

Fig. 1(a) illustrates a robot application in logistics for re-
sorting items to boxes, which we mimic with out test scenario
Fig. 1(b), which displays the non-deformed original design.

a) Qualitative Discussion: Fig. 3(b) illustrates a defor-
mation due to the DESIGNOPTTORQUE method. One qual-
itative observation we made was that joint axes were con-
sistently reoriented to become non-orthogonal. They seemed
to be optimized so that they more equally contribute to each
phase of the manipulation, whereas in the original orthogonal
design different joints have very different loads during each
phase of the manipulation. An example for this is the first
joint, which rotates about the vertical axis in the original
design and mostly contributes only to lateral movements. In
the optimized deformations, the first joint was significantly
tilted as well as non-orthogonal to the following axis.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

su
m

 o
f 

sq
u
a
re

 t
o
rq

u
e
s

Bᴀsᴇʟɪɴᴇ
DᴇsɪɢɴOᴘᴛ
DᴇsɪɢɴOᴘᴛTᴏʀǫᴜᴇ

(a) Torques

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

su
m

 o
f 

sq
u
a
re

 v
e
lo

ci
ti

e
s

(b) Velocities

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

su
m

 o
f 

sq
u
a
re

 a
cc

e
le

ra
ti

o
n
s

(c) Accelerations

Fig. 4: Performance for the re-sorting scenario. Optimizing
for design significantly reduces all three metrics. Optimiz-
ing additionally for torques yields designs with drastically
smaller torques (a), while there is a trade-off with trajectory
length and smoothness (b,c).

A second qualitative observation is that when strongly
penalizing joint torques (as in Fig. 3(b)), the optimized
designs often arrange three axes around the elbow rather
close to each other in a non-orthogonal way. The designs
seemed to “lean back”, where the elbow region seems to
counterweight endeffector load, so as to reduce torques on
the basis axes.

While these are only qualitative observations, they ex-
emplify the range of effects we can achieve with design
optimization.

b) Quantitative Discussion: Fig. 4 compares the three
methods over 15 randomized runs. We find that design
optimization significantly reduces all three metrics. How-
ever, including joint torques additionally as an objective
makes a large difference as well: The torque metric itself
of course reduces significantly for DESIGNOPTTORQUE vs.
DESIGNOPT. But this comes with the trade-off of longer
and less smooth trajectories. Qualitatively we found that
this is due to the system avoiding poses with high static
(gravitational) load on the joints.

C. Wrench Tool Scenario

The second scenario is meant to illustrate the optimization
of tools and other aspects of the environment. We designed
a wrench tool scenario as illustrated in Fig. 1(c), where the
robot has to first slide the wrench tool over the tip of a bolt,
then turn and exert a constant torque, then retract again and
move on to the next randomly placed bolt. The approach and
retract are modeled exactly as the down and up approaches
of pick-and-place, with imposing constant accelerations of
the bolt tip in wrench tip coordinates. The design parameter
δ included also a deformation of the wrench tip as well as
a translation of the pose of the table on which the bolts are
fixed. The latter illustrates the possibility to include station
design parameters in the co-optimization.

a) Qualitative Discussion: In this scenario, DE-
SIGNOPT and DESIGNOPTTORQUE had large effects on the
robot design. Fig. 5(b) displays an extreme case, where the
design was optimized for one particular bolt placement. The



(a) (b) (c)

Fig. 5: Example designs for both scenarios.

 2

 4

 6

 8

 10

 12

su
m

 o
f 

sq
u
a
re

 t
o
rq

u
e
s

Bᴀsᴇʟɪɴᴇ
DᴇsɪɢɴOᴘᴛ
DᴇsɪɢɴOᴘᴛTᴏʀǫᴜᴇ

(a) Torques

 0.01

 0.1

 1

 10

su
m

 o
f 

sq
u
a
re

 v
e
lo

ci
ti

e
s

(b) Velocities

 0.1

 1

 10

 100

 1000

su
m

 o
f 

sq
u
a
re

 a
cc

e
le

ra
ti

o
n
s

(c) Accelerations

Fig. 6: Performance for the wrench tool scenario.

design highly specialized on applying the required wrench
by a pull maneuver; in the leaning back design gravitational
loads cancel with the pulling torques to minimize overall
torque penalties in the joints. The wrench tool and links
were elongated and bent to simplify exerting the torque.
In a second example, Fig. 5(c), we also allowed the board
positioning to be deformed and optimized for 10 random
placements on the board. The board was moved further away,
the lower arm and wrench tool were elongated significantly,
and the torque motion mostly generated by lower axes
movements; the twisted wrench tool translates a pull to
torque.

b) Quantitative Discussion: Fig. 6 compares the three
methods over 15 randomized runs. The results match our
findings for the re-sorting scenario, including the trade-off
between torque optimization and longer and less smooth
trajectories, but are more emphasized. Note the log scale for
velocities and accelerations. Qualitatively we found this to
be due to the particular movements necessary in the wrench
tool scenario, which seem near the edge of feasibility for
some bolt placements for the original design.

V. CONCLUSIONS

We proposed a method for co-optimization of robot,
environment and tool designs with the resulting sequen-
tial manipulation trajectories. Our evaluations show that
design optimization can significantly improve on metrics
such as penalizing velocities (path length) and joint torques.
The wrench tool scenario demonstrated that the solver can
find interesting strategies to exert the necessary external
forces with minimal effort. The re-sorting scenario aimed
to demonstrate the high relevance of tailored robot station
design for industrial applications. While the current hardware

industry cannot yet deliver systems with custom link shapes,
a modular actuator design combined with 3D-printed link
structures of optimized shapes is highly promising and
would bring our robot design methods directly to application,
enabling tailored robot designs for each specific industrial
task ensemble.

A highly interesting endeavor for future research is to also
consider discrete design decisions, such as the number of
joints, for co-optimization. This could be tackled by hybrid
optimization approaches, such as logic-geometric program-
ming [23] or other branch-and-bound approaches. We thank
the insightful reviewers to hint at this.

REFERENCES

[1] M. Mason, “The mechanics of manipulation,” in Robotics and Automa-
tion. Proceedings. 1985 IEEE International Conference On, vol. 2.
IEEE, 1985, pp. 544–548.

[2] C. Eppner, G. Bartels, and O. Brock, “A compliance-centric view of
grasping,” DOI 10.14279/depositonce-5050, Feb. 2012.

[3] C. Paul, “Morphological computation: A basis for the analysis of
morphology and control requirements,” Robotics and Autonomous
Systems, vol. 54, no. 8, pp. 619–630, 2006.

[4] H. Hauser, A. J. Ijspeert, R. M. Füchslin, R. Pfeifer, and W. Maass,
“Towards a theoretical foundation for morphological computation with
compliant bodies,” Biological cybernetics, vol. 105, no. 5-6, pp. 355–
370, 2011.

[5] A. Verl, A. Albu-Schäffer, O. Brock, and A. Raatz, Soft Robotics.
Springer, 2015.

[6] R. Pfeifer, M. Lungarella, O. Sporns, and Y. Kuniyoshi, “On the infor-
mation theoretic implications of embodiment–principles and methods,”
in 50 Years of Artificial Intelligence. Springer, 2007, pp. 76–86.

[7] M. Toussaint, J.-S. Ha, and D. Driess, “Describing physics for phys-
ical reasoning: Force-based sequential manipulation planning,” IEEE
Robotics and Automation Letters, 2020.

[8] H. Wicaksono and C. Sammut, “A learning framework for tool creation
by a robot,” in Proceedings of ACRA, 2015.

[9] O. Taylor and A. Rodriguez, “Optimal shape and motion planning for
dynamic planar manipulation,” Autonomous Robots, vol. 43, no. 2, pp.
327–344, 2019.

[10] R. M. Holladay, “Force-and-motion constrained planning for tool use,”
PhD Thesis, Massachusetts Institute of Technology, 2019.

[11] J. Whitman and H. Choset, “Task-specific manipulator design and
trajectory synthesis,” IEEE Robotics and Automation Letters, vol. 4,
no. 2, pp. 301–308, 2018.

[12] S. Ha, S. Coros, A. Alspach, J. Kim, and K. Yamane, “Computational
co-optimization of design parameters and motion trajectories for
robotic systems,” The International Journal of Robotics Research,
vol. 37, no. 13-14, pp. 1521–1536, 2018.

[13] O. Taylor and A. Rodriguez, “Optimal shape and motion planning for
dynamic planar manipulation,” Autonomous Robots, vol. 43, no. 2, pp.
327–344, 2019.

[14] L. Nair, N. Shrivatsav, and S. Chernova, “Tool macgyvering: A novel
framework for combining tool substitution and construction,” arXiv
preprint arXiv:2008.10638, 2020.

[15] L. Nair, N. S. Srikanth, Z. M. Erickson, and S. Chernova, “Au-
tonomous Tool Construction Using Part Shape and Attachment Pre-
diction.” in Robotics: Science and Systems, 2019.

[16] D. Driess, O. Oguz, and M. Toussaint, “Hierarchical task and motion
planning using logic-geometric programming (hlgp),” RSS Workshop
on Robust Task and Motion Planning, 2019.

[17] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: Lever-
aging symbolic planning for efficient task and motion planning,” The
Int. Journal of Robotics Research, vol. 37, no. 1, pp. 104–136, 2018.

[18] T. Simon, J.-P. Laumond, J. Corts, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” The Int. Journal of Robotics
Research, vol. 23, no. 7-8, pp. 729–746, 2004.

[19] M. Toussaint, K. R. Allen, K. A. Smith, and J. B. Tenenbaum,
“Differentiable physics and stable modes for tool-use and manipulation
planning,” in Proc. of Robotics: Science and Systems (R:SS 2018),
2018.



[20] M. Stilman and J. Kuffner, “Navigation among movable obstacles:
real-time reasoning in complex environments,” in 4th IEEE/RAS Int.
Conf. on Humanoid Robots, 2004., vol. 1, 2004, pp. 322–341 Vol. 1.

[21] J. E. King, M. Cognetti, and S. S. Srinivasa, “Rearrangement planning
using object-centric and robot-centric action spaces,” in 2016 IEEE Int.
Conf. on Robotics and Automation (ICRA), 2016, pp. 3940–3947.

[22] M. Toussaint, “A tutorial on Newton methods for constrained trajectory
optimization and relations to SLAM, Gaussian Process smoothing,
optimal control, and probabilistic inference,” in Geometric and Nu-
merical Foundations of Movements, J.-P. Laumond, Ed. Springer,
2017.

[23] M. Toussaint and M. Lopes, “Multi-bound tree search for logic-
geometric programming in cooperative manipulation domains,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA 2017),
2017.


	Introduction
	Related Work
	Co-Optimizing Design, Motion, and Manipulation Plans
	General Optimization Formulation
	Deformations and Design Parameters 
	Shared decision variables and sparse path Jacobians
	Link Deformations

	Manipulation Constraints
	Pick-and-Place Constraints
	Collision Constraints
	Control Costs

	Torque/Force Constraints and Costs

	Experiments
	Baselines & Metrics
	Re-sorting Scenario
	Wrench Tool Scenario

	Conclusions
	References

