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Abstract— Robotic manipulation of unknown objects is an
important field of research. Practical applications occur in
many real-world settings where robots need to interact with
an unknown environment. We tackle the problem of reactive
grasping by proposing a method for unknown object tracking,
grasp point sampling and dynamic trajectory planning. Our
object tracking method combines Siamese Networks with an
Iterative Closest Point approach for pointcloud registration into
a method for 6-DoF unknown object tracking. The method does
not require further training and is robust to noise and occlusion.
We propose a robotic manipulation system, which is able to
grasp a wide variety of formerly unseen objects and is robust
against object perturbations and inferior grasping points.

I. INTRODUCTION

Aiming towards a wide-spread application of robots in
natural or unstructured industrial environments, methods
for robotic perception need to incorporate more general
approaches. Robots manipulating in noisy and cluttered real-
world scenarios require the ability to interact with arbitrary,
unknown objects. Interacting with objects in the real world
requires the ability to efficiently perceive the target object.
Target objects need to be tracked in real-time. Versatile and
robust tracking algorithms are required. Further, in order to
act in a dynamically changing environment, robots need to
react to changes and collaborate with other agents.

This work tackles the problem of reactive grasping of
unknown objects. That is, grasping of unknown objects under
perturbation and changes of the environment. We divide the
problem of reactive grasping into three subproblems: detec-
tion and real-time tracking of unknown objects, computation
of grasp configurations and reactive trajectory planning.

Object tracking methods are often trained on specific
classes of objects [1], [2] or require a 3D model of the
target object a priori [3], [4], [5], [6]. This heavily limits
their usability for practical applications. Existing methods
for unknown object tracking either target coarse grained
tracking [7], [8], [9], [10], are prone to pose drifting [11]
or limited to a specific environment [12]. Existing methods
for grasp point detection are too slow for for real-time
evaluation [13] or do not take the current robot configuration
into account [14], [15]. Common methods for trajectory
planning are designed for static scenes. Specifically, standard
Rapidly Random Trees for trajectory planning are designed
for static scenes only.

We propose a method for 6-DoF tracking of unknown
objects based on Siamese Networks for 2D tracking and
Iterative Closest Point (ICP) for pointcloud registration. This
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Fig. 1: Tracking and grasping unknown objects.

method is able to track the 6-DoF pose of a wide variety
of objects. That is, given a set of RGB templates captured
during tracking and a pointcloud template of the object
captured at an initialization phase, the method outputs the
subsequent poses of the target object in real-time. Further,
we propose a method for grasp candidate computation and
evaluation, taking the depth of the target object and the
current robot state into account. We also propose a method
for reactive trajectory planning in the presence of dynamic
changes and collisions. This system is able to efficiently
manipulate a diverse set of objects. We demonstrate this
ability in our accompanying video1. We summarize our
contributions as follows:

1) Our approach combines Siamese Networks for RGB
tracking with ICP to realize a conceptually simple,
but powerful 6-DoF tracking method: this method is
able to track a wide variety of unknown objects under
occlusion in real-time, while being class-agnostic and
model-free.

2) We propose a novel method for reactive grasping, able
to grasp dynamic objects even under perturbation of
the robot or the target object.

3) We combine both approaches with a method for

1https://youtu.be/Hew00rMw8qg



reactive trajectory planning accounting for dynamic
changes of the environment.

The paper is structured as follows: in section II related
work is presented, section III provides background on the
methods we built upon, section IV explains our object
tracking methond and section V describes the approach to
reactive grasping. In section VI experiments are conducted
in simulation and on a real robot.

II. RELATED WORK

A. Object Tracking

a) Model-based tracking: One predominant paradigm
for 6-DoF object tracking is model-based object tracking.
That is, a 3 dimensional description of the target object is
available a priori. A large body of work has been evaluated
on this topic. Particle Filtering [16] proves to be useful
in model-based object tracking [17]. Particle filter based
tracking models often operate directly on pointclouds. In-
corporating control inputs from the robot, to give a good
estimate on the current object is also successfully applied to
particle filter trackers [3]. Other appraoches extend particle
filter tracking to multi-target tracking using a mixture in
particles [17] and learning the correct correspondence to
a certain target object via AdaBoost [18]. [19] uses a
particle filter algorithm operating on RGB-pointclouds, thus,
integrating texture information into tracking.

Fully integrating the robot kinematics in object tracking
helps to reduce the degrees of freedom of the target object
and serves as a good prior for vision based object tracking
in robotic manipulation [5], [20]. However, such approaches
rely on both, an object model and a robot model being
present beforehand, and reduce the general applicability of
the system.

Rendering multiple simulated views from the 3D model
of the target object can be used to leverage deep transfer
learning for pose estimation [21]. Garon et. al [4] use
convolutional neural networks to directly operate on RGBD
data, by training from scratch for each individual object.
SegICP [22] successfully combines deep neural networks for
semantic segmentation with ICP for known object tracking.

b) Pose estimation: Pose estimation and Object Detec-
tion are related fields of research: in [23] a deep learning
method for object detection is extended by an object database
yielding an object tracking system. Many approaches extend
deep learning models for visual object detection to 6-DoF
pose estimation from RGB data [24], [25], [26]. Applying
deep learning models directly on pointcloud data seems
promising since the rise of PointNet feature extractors [27],
[28]. VoteNet [29] combines deep learning with Hough
voting [30] to predict 3D bounding boxes on pointcloud input
data.

However, most approaches to pose estimation lack the
ability to run in real-time, and therefore render impractical
for robotic manipulation. Tremblay et. al [1] train a deep
neural network for pose estimation on synthetic RGB data
using domain randomization. The method is suited as a
real-time system for real-world robotic grasping of known

objects. All approaches in this paragraph, however, are only
able to track objects from a set of predefined classes.

c) Unknown objects: Despite the practical importance,
only little research is done on tracking of unknown ob-
jects in robotics applications. Early work uses optical flow
tracking and an integrated eye-in-hand vision system to
grasp arbitrary objects with a visual servoing appraoch [31].
Experiments show that the approach only works in a spe-
cific environment. Other approaches rely on detecting and
segmenting unkown objects in a known environment [12] or
do not take the shape of the object into account [32]. Methods
based on a large number of different algorithms, each tuned
for a specific application, are usually brittle and sensitive to
changing environments. A more recent approach to unknown
object tracking applies multiple deep learning models to
first segment the scene into model segments, then predict
the position and orientation relative to the last frame [11].
Therefore, the method bootstraps the current object pose on
earlier estimations. Experiments show that this approach is
particularly prone to tracking drift: stable tracking of real-
world objects is only possible for approximately one second.

B. Grasp Candidate Detection
Deep learning for robotic perception has changed the field

of computer vision based grasp candidate detection. Existing
approaches show that using neural networks on RGBD input
successfully discriminate grasp candidates to evaluate the
best grasp to manipulate objects [33], [34]. Neural nets are
also used to generate 6-DoF grasps enabling more informed
grasping and manipulation of unknown objects [35]. Recent
work concentrates on the generation of dense pixel-wise
quality maps and pixel-wise grasp information to generate
multiple grasps at once [14]. These approaches use small
neural networks to achieve real-time generation of grasp
candidates and repeatedly set a new state-of-the-art on inter-
national grasping benchmarks [15]. However, such methods
do not take the robot configuration into account.

C. Dynamic Trajectory Planning
Reactive planning is formerly shown to perform well in

complex manipulation tasks [36]. Dynamic changes of the
environment can also be efficiently handled by sampling
based approaches [37].

Our method for object tracking combines Siamese Net-
works for template-matching in RGB frames with ICP-based
pointcloud registration. Using this object tracking method
we disentangle perception from grasp point calculation,
providing the flexibilty to exectute complex queries on the
scene and taking the current robot configuration into account.
We further implement a variant of the conceptually simple
bug algorithm in configuration space able to plan collision-
free trajectories in a dynamic environment.

III. SIAMMASK & THOR
The method for 6-DoF tracking proposed in this work

is built on SiamMask [38] and THOR [39] for template-
matching based RGB object tracking. This section provides
background on these methods. For more details please con-
sider the original papers.



Given a template T and an input x, SiamMask computes
a cross-correlated feature map

gθ(T, x) = fθ(T ) ? fθ(x), (1)

where fθ denotes the feature extraction model used to
process both, the novel input and the template. Equation 1
yields a bounding box in image coordinates and a tracking
score. Computing a segmentation mask of the target object
in the RGB observation is done using a separate branch in
the neural network for mask refinement.

THOR consists of a long-term and a short-term module of
RGB templates which can be used alongside SiamMask. In
each iteration of tracking a subregion x, corresponding to the
estimated position and size of the target object, is cropped
from the current frame and fed through the SiamMask model
alongside each individual RGB template from the THOR
long-term module (LTM) Tl1, . . . , Tl5 and short-term module
(STM) Ts1, . . . , Ts5

gθ(Tl1, . . . , Tl5;Ts1, . . . , Ts5;x). (2)

Templates in the STM are updated in a first-in first-out
manner. Every 10 iterations a new template is generated
from the current crop and appended to the STM, while the
oldest template in the STM is removed. Tl1, the ground truth
template, remains in the LTM.

Let zi = fθ(Ti) denote the features extracted from
template Ti. A Gram Matrix z1 ? z1 z1 ? z2 · · · z1 ? zm

...
...

. . .
...

zm ? z1 zm ? z2 · · · zm ? zm


is constructed, where each entry Gij expresses the similarity
of templates Ti and Tj by cross-correlating the features zi
and zj . If a novel template Tc is similar enough to the
ground-truth template Tl1 and replacing an existing tem-
plate in the LTM increases the volume of the parallelotope
Γ (z1, . . . , z5) spanned by the feature vectors of each
template, it is added to the LTM. A new template Tc is
similar enough, if its features zc satisfy the inequality

zc ? z1 > l ·G11 − γ, (3)

where l is a hyperparameter to trade-off tracking performance
against drifting robustness. γ is computed using the templates
in the STM

γ = 1− 2

N(N + 1)Gst,max

N∑
i<j

Gst,ij (4)

where Gst is a Gram Matrix for the STM similar to G.

IV. 6-DOF TRACKING

This section describes the approach this work takes on
tracking arbitrary objects in 6 degrees of freedom. Since
this approach is model-free, only information from a single
RGBD camera at initialization time is used to describe the
target object. Initialization of the tracking method requires an
initial (arbitrarily defined) object pose in world coordinates
and a 2D bounding box in image coordinates. We assume
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Fig. 2: Overview of our object tracking component.

that we are able to detect an initial pose and a 2D bounding
box of an object.

Briefly, our method works as follows:
1) In an initialization phase, 3D bounding boxes and

cartesian poses of arbitrary objects on a table are
detected using background subtraction in depth images
from a top down view.

2) SiamMask + THOR is started to track the target object
in RGB frames. An initial pointcloud is saved for 3D
pose estimation via pointcloud registration.

3) SiamMask tracks the target object in new frames in
real-time, a pointcloud of this observation is segmented
from the depth image. The initial pointcloud is fit to the
new observation using Generalized-ICP [40] to retrieve
the 6-DoF transform.

Figure 2 shows an overview of the tracking system. The
system maps an RGBD input alongside an initial guess
(gained from the previous iteration or a kinematic map) of
the target object pose to an estimate of the current object
pose. We call our object tracking method THOR + G-ICP.

a) Initialization: RGB tracking is initialized by supply-
ing an initial frame and a bounding box containing the target
object to the tracker. The bounding box is used to crop the
frame to an initial RGB template Tinit. The THOR long-term
module (LTM)

Tl1, . . . , Tl5 ← Tinit (5)

and short-term module (STM)

Ts1, . . . , Ts5 ← Tinit (6)

are filled with this initial template of the object.
In order to find a template pointcloud of the target object,

the segmentation mask provided by SiamMask in the first
iteration of RGB tracking is used to retrieve the pixels dij ∈
R in the depth image, which correspond to points on the
target object’s surface. We project the depth values dij to
points xk ∈ R3 in world coordinates using the inverse camera
projection P̂ ∈ R3×4 via

xk = P̂ · (i · dij j · dij dij 1)
T
. (7)

The set of these points Ptemp = {xk}Nk=1 is the template
pointcloud, which is registered to a novel observation to



retrieve the transformation of the target object in world
coordinates.

b) Tracking: RGB tracking is performed according to
SiamMask with THOR as template module. In every step,
SiamMask relies on cropping the correct subwindow from
the image to perform template matching on a smaller region
of the image. Cropping the correct subwindow, depends on
prior information on the target object’s location and its size
in the image frame. If the robot is not moving the object, the
position and size of the object in the previous frame is used.
If the robot is moving the object, a kinematic map φ : Rn →
R3 is used to compute an estimate of the current object pose
and a 3D bounding box containing the object. A 2D bounding
box in image coordinates is then found by projecting the
corners of the 3D bounding box to image coordinates and
computing the bounding rectangle containing all corners. A
step of RGB tracking yields a segmentation mask containing
the target object in the current frame. This segmentation
mask is used to select the corresponding pixels in the depth
image. These pixels are then projected to points on the
object’s surface in world coordinates using equation 7. This
set of points Pobs is used as an observation to fit the template
pointcloud Ptemp.

To reduce the computational cost of pointcloud regis-
tration, both pointclouds are preprocessed by voxel grid
filtering, reducing the dimesionality of the pointcloud while
keeping the geometrical properties.

Pointcloud fitting is done using the Generalized-ICP algo-
rithm, setting either the last known pose of the object or the
pose computed using a kinematic map, in case the robot is
handling the target object, as an initial guess. Formally, this
can be seen as a function mapping from a set of pointclouds
and an initial guess X to final transformation Y

hG-ICP : Rn×3 × Rm×3 × R4×4 → R4×4

hG-ICP : (Pobs,Ptemp, X) 7→ Y.
(8)

We use this 6-DoF tracking method to perform reactive
grasping on a real robot.

V. REACTIVE GRASPING

In this section we develop a method to grasp (cuboid-
shaped) objects, which is able to dynamically react to distur-
bances, both in the environment and the robot configuration.
While our tracking method is able to process arbitrarily
defined poses, this method requires the pose to be sensibly
defined. That is, the coordinate system axes should be aligned
with the edges of a bounding box surrounding the target
object.

A. Grasp Configuration Observer

We propose a dynamic grasp configuration observer to find
a variety of N grasp candidates for a cuboid-shaped object.
Since our tracking module outputs the pose of a cuboid-
shaped bounding box around an object, this approach is also
used to manipulate arbitrarily shaped objects.

Let q ∈ Rn be the robot configuration. A grasp configura-
tion candidate g = (q, c, a) is defined by a joint configuration

q, a cost c ∈ R, and an age a ∈ N. Grasp candidates are
determined by minimizing an inverse kinematics problem

q∗ = arg min
q∈Rn

‖q‖2W +

M∑
i=1

λi ‖φi(q)‖2 , (9)

where φi : Rn → Rdi , yi = φi(q) are task maps that map
a robot configuration to a di-dimensional space and λi ∈
R their weighting factors. W is a positive definite matrix
providing regularization.

The following cost terms are considered during optimiza-
tion.

a) Position: The position cost is defined as

φpos(q) = po(q)− pe(q), (10)

where po : Rn → R3 and pe : Rn → R3 are functions
mapping the configuration q to the position of the target
object and the end-effector, respectively.

b) Alignment: Performing successful grasipng requires
the end-effector to be aligned with the object. We formulate
the alignment cost as

φalign(q) =
(

1−
(
vo,x(q)T ve,x(q)

)2)
(11)(

1−
(
vo,y(q)T ve,x(q)

)2)
(12)(

1−
(
vo,z(q)

T ve,x(q)
)2)

, (13)

where vo,x : Rn → R3 maps the configuration to the unit
vector described by the x-axis of the target object coordinate
system, analogously vo,y(q) and vo,z(q) for the y- and z-axis.
ve,x(q) maps to the unit vector describing x-axis of the end-
effector coordinate system. Minimizing this cost term aligns
ve,x to one of the axes of the target object coordinate system.

c) Collision: In order to successfully grasp the object,
we need to avoid collisions with the object itself. The
collision cost term is defined as

φcoll(q) = (d(q)−m)[d(q) < m] (14)

where d maps q to the pairwise distances of all shapes of
the robot and the target object. m is an upper threshold on
the minimum distance. If the distance of two shapes is less
than m this cost term becomes active.

d) Joint Limits & Homing: We further add a cost
term φ(q)limit increasing when joint limits of the robot are
violated and a homing cost term φ(q)home.
q∗ is the configuration of a feasible grasp. However, com-

puting N grasp candidates starting at the same configuration
q0 results in all candidates defining the same configuration
q∗. This is especially relevant for the alignment term φalign,
which has multiple local minima. Instead of explicitly enu-
merating possible different alignments as in [41], [42], we di-
versify grasp candidate computation by introducing a random
alignment term, effectively randomizing the approach axis
of a grasp candidate. That is, at initialization we compute a
random orthonomal basis

R =
(
v1 v2 v3

)
∈ R3×3. (15)



(a) Linearly interpolating be-
tween qt and q∗ would lead to
collisions with the object.

(b) After backstepping two
steps, the shortest path would
still end in collisions.

(c) After four backsteps we can
take the path to our target tra-
jectory.

(d) We follow the target trajec-
tory towards q∗.

Fig. 3: Procedure of backstepping if collisions are encountered on the linear interpolation between qt and q∗.

We use R to introduce an additional cost term

φrand(q) =

1−
(
v1(q)T vx,e(q)

) (
v1(q)T vx,e(q)

)
1−

(
v2(q)T vy,e(q)

) (
v2(q)T vy,e(q)

)
1−

(
v3(q)T vz,e(q)

) (
v3(q)T vz,e(q)

)
 .

We further introduce two additional weighting functions

finc(a) =
1

1 + exp(α2 − a)
(16)

fdec(a) =
1

1 + exp(a− α
2 )

(17)

depending on the age a of a grasp candidate. α is
a constant threshold. During optimization we weight
φpos(q), φalign(q), φcoll(q) with finc(a) and φrand(q) with
fdec(a) ensuring that only the approach axis is randomized
and no force balance arises between φalign(q) and φrand(q).

B. Grasp Candidate Ranking
Choosing the best grasp from N grasp candidates is non-

trivial. The essential and hard requirement for a good grasp
candidate is whether the grasp configuration ends in an
end-effector position inside the target cuboid. We compute
this using the end-effector position relative to the cuboids
coordinate system and the shape of the cuboid. We assume
that success of grasping increases with decreasing distance
to the center of the cuboid. If two candidates are both inside
the cuboid and also share the same distance to the center,
we choose the one with lower homing costs.

C. Updating Grasp Candidates
Since an online reactive grasping approach needs to take

the changing environment into account, we continously up-
date the grasp candidates. At initialization all grasp candi-
dates have the same cost vector c. In each iteration the age
a of each grasp is incremented and the cost vector of each
grasp is evaluated using the current configuration qt.

D. Trajectory Planning
Our goal is to follow a trajectory starting in the current

configuration qt and ending in the configuration q∗ of the
best grasp candidate q∗. Due to the possibilty of a changing
environment, and more specifically the change of the target
object pose, we cannot plan a full trajectory in advance.
Movements of the target object can lead to collisions during
a grasp approach following a pre-planned trajectory. We mit-
igate this problem by using a technique we call backstepping.

Our goal is to follow a target trajectory T defined by
the linear interpolation with stepsize τ between the homing

configuration q0 and the configuration q∗ of the best grasp
candidate. At each step we find the closest configuration qs
on the target trajectory T to our current configuration qt. If
a step of stepsize τ ends up in a collision with an object,
we take a step towards q0. The procedure of backstepping is
depicted in figure 3.

VI. EXPERIMENTS

This section describes experiments conducted on object
tracking using THOR + G-ICP in simulation and experiments
using the complete system for reactive grasping on a real
robot.

A. Object Tracking

For quantitive comparison to an existing method we con-
duct experiments in simulation. We render a camera view
on the scene which is located at the same pose as our
camera on the real world setup. We compare THOR + G-
ICP to a particle-filter based object tracking method from
the PCL library [43] (named particle in the plots). Errors are
reported in terms of position and rotation. Rotational errors
are reported in terms of the geodesic loss.

a) Occlusion: Occlusions occur frequently during
robotic manipulation. When grasping an object with a paral-
lel jaw gripper, parts of the object are already occluded by the
gripper fingers. In this experiment a small box moving into
the scene from the top occludes the target object, as seen in
figure 4a. Results, seen in figure 4c, show that occlusion has
almost no impact on the performance of THOR + G-ICP.
The accuracy of the particle tracker, however, is reduced
proportional to the amount of occlusion. The stability of
THOR + G-ICP relies on the fact that SiamMask is able
to accurately segment the tracked object from the occluding
object. As seen in figure 4b, the segmentation mask of
SiamMask contains parts of the target object only. G-ICP is
able to fit the template pointcloud to the observations seam-
lessly, since the observation pointcloud omits the occluded
part.

b) Manipulation: Supporting robotic manipulation is
the main purpose of our object tracking method and therefore
an important experiment. It incorporates many different
possibilites which can occur during object tracking, e.g.
translational and orientational movements as well as partial
occlusion due to the gripper fingers or the second robot.
Figure 5 shows the manipulation process and results of object
tracking during manipulation. Results of object tracking are
depicted in figure 5e. These show that both methods are able



(a) A small rectangle occludes
the target object.

(b) Camera view on the scene.
The object, which occludes the
target object, is not contained in
the segmentation mask.
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(c) Results of object tracking during occlusion. THOR + G-ICP
remains stable during the complete tracking sequence.

Fig. 4: Object tracking during occlusion.
to track the target object during manipulation. However, the
particle filter tracker loses the object once completely. This
corresponds to the moment of the handover (figure 5b) and
is due to the occlusion both gripper fingers generate on the
object. Tracking with THOR + G-ICP is stable during the
whole manipulation process and also generates almost no
rotational error.

B. Reactive Grasping
We perform reactive grasping with a Franka Emika Panda

Robot. Objects on the table are detected from a top down
view using a ASUS Xtion PRO LIVE RGBD camera. Once an
object on the table is detected, THOR + G-ICP is initialized
with an Intel RealSense D415 camera from a side view. These
experiments are also shown in our accompanying video.

a) Unknown Objects: Experiments on grasping of un-
known objects are conducted in this section. Figure 1 shows
the objects which are manipulated in our experiments. THOR
+ G-ICP is able to track each of these objects during the
complete grasping process. Further, the approach to reactive
grasping presented in this work is able to grasp each object
even under disturbances. The pringles can is moved by a hu-
man during the manipulation process. However, our approach
is able to grasp the object successfully. Notably, the gripper
finger occludes the measuring tape by more than half of its
size in the camera view. The lashing strap is surrounded by a
plastic firm, exposing heavy reflections. Although reflections
impose difficulties on classical computer vision techniques,
THOR + G-ICP is able to track the lashing strap effortlessly.

b) Collaborative Manipulation: Experiments on grasp-
ing under heavy disturbances are conducted. During theses
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(e) Results of tracking during manipulation.

Fig. 5: Object tracking during manipulation. In a) the first
robot picks up the target object and hands it over to the
second robot in b). The second robot moves the object to
an intermediate position in c) and finally moves to the goal
position d) while keeping the object in hand.

experiment the robot and the target object are moved and
re-oriented by a human during grasp approaches. The robot
is also prevented from grasping the object and moved to a
position beside the object, likely leading to collisions with
the object. Target objects are successfully tracked throughout
the process and the path planning component is able to
recover from each state, leading to a successful grasp in each
experiment.

VII. CONCLUSION

We present a system to track and dynamically manipulate
unknown objects. Our experiments show that our approach
to reactive grasping is successful even under occlusion of
the target object and under perturbation of either the robot
or the object.
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