
Article

The International Journal of
Robotics Research
2024, Vol. 43(1) 3–33
© The Author(s) 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649231209337
journals.sagepub.com/home/ijr

Multilevel motion planning: A fiber bundle
formulation

Andreas Orthey1,2, Sohaib Akbar3 and Marc Toussaint1,2

Abstract
High-dimensional motion planning problems can often be solved significantly faster by using multilevel abstractions. While
there are various ways to formally capture multilevel abstractions, we formulate them in terms of fiber bundles. Fiber
bundles essentially describe lower-dimensional projections of the state space using local product spaces, which allows us
to concisely describe and derive novel algorithms in terms of bundle restrictions and bundle sections. Given such a
structure and a corresponding admissible constraint function, we develop highly efficient and asymptotically optimal
sampling-based motion planning methods for high-dimensional state spaces. Those methods exploit the structure of fiber
bundles through the use of bundle primitives. Those primitives are used to create novel bundle planners, the rapidly-
exploring quotient space trees (QRRT*), and the quotient space roadmap planner (QMP*). Both planners are shown to be
probabilistically complete and almost-surely asymptotically optimal. To evaluate our bundle planners, we compare them
against classical sampling-based planners on benchmarks of four low-dimensional scenarios, and eight high-dimensional
scenarios, ranging from 21 to 100 degrees of freedom, including multiple robots and nonholonomic constraints. Our
findings show improvements up to two to six orders of magnitude and underline the efficiency of multilevel motion planners
and the benefit of exploiting multilevel abstractions using the terminology of fiber bundles.

Keywords
Optimal motion planning, multi-robot motion planning, nonholonomic planning, fiber bundles

Received 18 July 2020; Revised 21 July 2023; Accepted 1 October 2023

Senior Editor: Gregory Chirikjian

Associate Editor: Anirudha Majumdar

1. Introduction

As human beings, we often tackle complex problems by
employing abstraction hierarchies (Simon, 1969; Ballard,
2015). Abstraction hierarchies, however, are not only
helpful for us, but they can also be used by robots to solve
high-dimensional motion planning problems—efficiently,
and with strong guarantees (Orthey and Toussaint, 2019;
Reid et al., 2019; Ichter and Pavone, 2019; Vidal et al.,
2019; Gochev et al., 2012).

However, abstractions in robot motion planning are
difficult to model. The state spaces involved are usually
continuous, high-dimensional, and might contain intricate
constraints (Konidaris, 2019). It is often unclear how to
model abstractions over such state spaces, how such ab-
stractions can be efficiently exploited, and how we can keep
completeness, or optimality guarantees.

To tackle this problem, we introduce the framework of
fiber bundles (Steenrod, 1951; Lee, 2003) to robot motion
planning. Fiber bundles are a convenient way to model
multilevel abstractions, because they provide the useful
concepts of bundle sections and restrictions. Both bundle
sections and restrictions allow us to develop novel

Figure 1. Efficient search over fiber bundles by exploiting path
restrictions and sections. Left: A fiber bundle T2 → S1 which
abstracts the Torus to a base space (circle). A path on the base space
(magenta) imposes a path restriction (dark gray) on the Torus, on
which we can find a section (green). Right: A non-trivial fiber
bundle from the Mobius strip to a circle, with path restriction (dark
gray), and a planned tree (green).

1Max Planck Institute for Intelligent Systems, Stuttgart, Germany
2Technical University of Berlin, Stuttgart, Germany
3University of Stuttgart, Stuttgart, Germany

Corresponding author:
Andreas Orthey, Max Planck Institute for Intelligent
SystemsHeisenbergstraße 3, Stuttgart 70569, Germany.
Email: {aorthey}@is.mpg.de

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649231209337
https://journals.sagepub.com/home/ijr
https://orcid.org/0000-0002-1478-1405
mailto:{aorthey}@is.mpg.de
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649231209337&domain=pdf&date_stamp=2023-11-09

planning algorithms to exploit them for efficient sampling.
Figure 1 illustrates these two notions, which we will in-
troduce in more detail later. On the left, we show an ab-
straction (a projection) from the torus T2 to the circle S1. A
path on the circle (magenta) imposes a path restriction
(dark gray) on the torus T2. On this path restriction, we can
find path sections (green), which are paths which project onto
the path on the circle. The path on the circle acts here as a
guide to quickly find solution paths. On the right of Figure 1,
we show the same scenario for the Mobius strip, which is a
non-trivial fiber bundle (Möbius, 1858). A tree (green) is
shown on the path restriction (dark gray), where planning is
restricted by the path on the circle (magenta). By constructing
sections and restrictions, we can create novel motion plan-
ners, which are able to quickly find relevant regions in state
space to plan in. This allows those planner to efficiently solve
high-dimensionalmotion planning problems. An overview of
our approach is shown in Figure 2.

1.1. Our contributions

Our work builds on prior publications at the International
Conference on Intelligent Robots and Systems (IROS)
(Orthey et al., 2018) and the International Symposium on
Robotics Research (ISRR) (Orthey and Toussaint, 2019).
Our contributions over this prior work are:

1. We propose to formulate multilevel motion planning
problems using the terminology of fiber bundles, and
introduce the particularly useful notions of bundle
sections and bundle restrictions.

2. Based on this formulation, we improve upon previous
bundle planners QRRT and QMP and develop two new
bundle planners QRRT* and QMP*.

3. We show QRRT* and QMP* to be probabilistically
complete and asymptotically optimal by inheritance
from RRT*, and PRM*.

4. We define primitive methods on fiber bundles and
conduct a meta-analysis to find the best implementation
of those methods.

5. We provide open source implementations of fiber
bundles and bundle planners (together with a high-level

introduction, a tutorial, and demos), which is freely
available in the open motion planning library (OMPL).

6. We evaluate QMP, QMP*, QRRT, and QRRT* by
comparing them against planners from OMPL on four
low-dimensional scenarios ranging from 2 degrees of
freedom (dof) to 7-dof, and on eight high-dimensional
scenarios ranging from 21-dof to 100-dof.

Our evaluations show that our planners QMP, QMP*,
QRRT, and QRRT* can efficiently exploit fiber bundles.
While they are competitive in low-dimensional spaces, they
are particularly useful in high-dimensional spaces, where
other planners have difficulty finding solutions. We show
that for high-dimensional state spaces, our bundle space
planners can provide runtime improvements by up to two to
six order of magnitude.

2. Related work

We provide a brief overview on motion planning with
focus on optimal planning. We then discuss multilevel
motion planning by discussing how our approach of fiber
bundles is connected to existing research. In particular,
we stress the point that fiber bundles often contribute
additional vocabulary, which we can exploit to develop
novel methods, simplify notations and better structure our
code. We finish by reviewing complementary approaches
to fiber bundles and we discuss what our approach adds
to existing approaches in (optimal) multilevel motion
planning.

2.1. Motion planning

To solve motion planning problems, we need to develop
algorithms to find paths through the state space of a robot
(Lozano-Pérez, 1983). Searching such a state space is
NP-hard (Canny, 1988), but we can often efficiently find
solutions using sampling-based algorithms (LaValle,
2006; Salzman, 2019), where we randomly sample
states and connect them to a graph (Kavraki et al., 1996)
or to a tree (Lavalle, 1998). Many variations are possible,
for example, using bidirectional trees growing from start

Figure 2. Overview about the contributions of this paper (gray boxes are input). We tackle motion planning in high-dimensional state
spaces by imposing multilevel abstractions. Those abstractions are modeled as fiber bundles (Section 4), from which bundle primitives
are derived (Section 5), and the bundle planners QRRT, QRRT*, QMP, and QMP* are created (Section 6). Those bundle planners
efficiently exploit bundle primitives. Given a new query in a high-dimensional state space, this allows us to plan and optimize motions,
even in scenarios where non-bundle planners fail.

4 The International Journal of Robotics Research 43(1)

and goal state (Kuffner and LaValle, 2000; LaValle and
Kuffner Jr, 2001), lazy evaluation of edges (Bohlin and
Kavraki, 2000; Mandalika et al., 2019), sparse graphs
(Siméon et al., 2000; Jaillet and Siméon, 2008), safety
certificates (Bialkowski et al., 2016), or deterministic
sampling sequences (Janson et al., 2018; Palmieri et al.,
2019).

Often, we like to find an optimal path by minimizing an
optimization objective (Karaman and Frazzoli, 2011). To
find optimal paths, we could transfer ideas from classical
planning like lazy edge evaluation (Hauser, 2015) or sparse
graphs (Dobson and Bekris, 2014). However, cost function
landscapes (Jaillet et al. 2010) often provide additional
information we can exploit. Examples include informed sets
to prune irrelevant states (Gammell et al., 2018, 2020) or
fast marching trees to grow trees outward in cost to come
space (Janson et al., 2015). Recently, sampling-based
motion planning algorithms have also been extended to
address zero-measure constraints (Kingston et al., 2019),
implicit constraints (Jaillet and Porta, 2013), dynamic
constraints (Li et al., 2016), or dynamic environments (Otte
and Frazzoli, 2016).

All those algorithms can robustly solve many planning
problems, provide formal guarantees like probabilistic
completeness, or asymptotic optimality, and have been
verified in a wide variety of applications (LaValle, 2006;
Şucan et al., 2012). However, as we show in Section 8, we
often cannot use them to solve high-dimensional planning
problems in a reasonable amount of time (like less than
60 s). We believe additional information is required to
solve those problems efficiently. A possible candidate
for this additional information are multiple levels of
abstraction.

2.2. Multilevel motion planning

In multilevel motion planning, we impose a multilevel
abstraction on the state space and we develop algorithms
which exploit this abstraction. While several models for
multilevel motion planning have been put forward, we
propose to use fiber bundles. To justify this decision, we
show their relation to alternative modeling approaches and
provide clues to the additional value they bring to the table.

2.2.1. Quotient spaces. Fiber bundles are related to quotient
spaces (Orthey et al., 2018; Orthey and Toussaint, 2019;
Brandao and Havoutis, 2020), latent spaces (Ichter and
Pavone, 2019), or subspaces (Reid et al., 2020) in that
we can represent those spaces as the base space of a fiber
bundle. We can often create such a base space by taking the
quotient of an equivalence class (Pappas et al., 2000). Using
the ideas of base spaces, there are two interesting special
cases. First, we can use base spaces to simplify a non-
holonomic state space to a holonomic state space (Sekhavat
et al., 1998; Vidal et al., 2019). Often, having a path on the
base space is enough to find a global solution, in particular if
some sort of smoothness constraint is imposed (Vidal et al.,

2019; Hönig et al., 2018). Second, we can use sequences of
base spaces to simplify multi-robot planning problems
(Erdmann and Lozano-Perez, 1987; Siméon et al., 2002;
Solovey and Halperin, 2014). We can often solve such
problems efficiently by graph coordination. In graph co-
ordination, we first plan a graph on each individual robot
subspace, then we combine them using specialized algo-
rithms like sub-dimensional expansion (Wagner and
Choset, 2015) or directional oracles (Solovey et al.,
2016; Shome et al., 2020). This is different from our ap-
proach, in that graphs are constructed independently, while
we construct them sequentially, similar to a prioritization of
robots (Erdmann and Lozano-Perez, 1987; Van Den Berg
and Overmars, 2005; Ma et al., 2019).

While numerous works exist to exploit sequences of
base spaces (Zhang et al., 2009; Vidal et al., 2019), we
like to highlight two algorithms. First, the Manhattan-like
rapidly-exploring random tree (ML-RRT) (Cortés et al.,
2008; Nguyen et al., 2018), where path sections are
computed similar to the L1 interpolation we advocate.
However, the ML-RRTapproach differs from ours, in that
we use a different collision checking function for the base
space and we give formal guarantees using restriction
sampling. Second, the hierarchical bidirectional fast
marching tree (HBFMT) algorithm (Reid et al., 2019,
2020), where restriction sampling is used on sequences of
subspaces. Similar to our approach, Reid et al. (2020)
prove HBFMT to be almost-surely asymptotically opti-
mal by inheritance from BFMT*. Our approach is similar
in that we develop asymptotically optimal algorithms
based on RRT* and PRM*. However, contrary to both
Reid et al. (2020) and Jaillet and Siméon (2008), we use
quotient spaces instead of subspaces, we support mani-
folds instead of only Euclidean spaces, we support
multiple robots with nonholonomic constraints, and we
provide a variable path bias for restriction sampling
(contrary to a fixed path bias Reid et al. (2020)). We also
differ by providing a recursive path section method which
we show to quickly find sections even in high-
dimensional state spaces.

2.2.2. Constraint relaxations. Fiber bundles are related to
constraint relaxations (Boyd and Vandenberghe, 2004;
Roubı́ček, 2011), in that we can often model constraint
relaxations as a particular type of fiber bundle, that is, a
bundle with an admissible projection, which does not
reduce the dimensionality. We can often create constraint
relaxations by increasing the free space (Hsu et al., 2006),
by retracting the obstacle geometry (Saha et al., 2005), or
by shrinking robot links sequentially to zero (Baginski,
1996). While constraint relaxations often do not decrease
the dimensionality, there are, however, extensions which
do decrease the dimensionality, like progressive relaxa-
tions (Ferbach and Barraquand, 1997) or iterative con-
straint relaxations (Bayazit et al., 2005). In both methods,
we either remove links or robots from the problem and we
can use them to model the same multilevel abstractions as

Orthey et al. 5

we can do with fiber bundles. However, by using fiber
bundles, we can add additional insights like path sections
and restriction sampling.

Closely related to relaxations are projections (Şucan
and Kavraki 2009, 2011; Röwekämper et al., 2013; Luna
et al., 2020). Projections are a component of fiber bun-
dles, which we use to project the state space onto a lower-
dimensional base space. Contrary to quotient spaces,
projections are often not required to be admissible but can
even be random (Şucan and Kavraki, 2009). A note-
worthy approach is projection using adaptive dimen-
sionality (Vahrenkamp et al., 2008; Gochev et al., 2012,
2013), where projections remove degrees of freedom
(dof). We can remove dofs of a robot by having a fixed
projection (Gochev et al., 2012; Yu et al., 2020) or by
adjusting the projection depending on which links are
closest to obstacles (Yoshida, 2005; Kim et al., 2015).
While similar to fiber bundles, both Yoshida (2005) and
Kim et al. (2015) emphasize the role of distances in
workspace to choose a multilevel abstraction, which is an
interesting complementary approach to ours. We differ,
however, by supporting multiple robots, nonholonomic
constraints, and by providing asymptotic optimality
guarantees.

2.2.3. Admissible heuristics. Fiber bundles are related to
admissible heuristics (Pearl, 1984; Persson and Sharf, 2014;
Aine et al., 2016), in that we can use metrics on the lower-
dimensional base space as admissible heuristics (Passino
and Antsaklis, 1994) to guide search on the state space. This
is closely related to the idea of computing lower bounds for
planning problems (Salzman and Halperin, 2016). When
using sequences of fiber bundles, we basically use tighter
and tighter lower bounds on the real solution. Our approach
differs, however, in that we do not consider inadmissible
heuristics, which we could combine with admissible heu-
ristics to often speed up planning (Aine et al., 2016;
Tonneau et al., 2018).

While there are many ways to define admissible heu-
ristics (Aine et al., 2016), we believe there are two main
approaches for the case of continuous state spaces, namely,
low-dimensional sampling and guide paths. In low-
dimensional sampling (Şucan and Kavraki, 2009), we
first sample on a lower-dimensional base space, then use
those samples to restrict sampling on the state space. There
are two main approaches. First, we can select sequences of
subspaces of the state space (Xanthidis et al., 2018), then
sample them by selecting the subspaces based on the density
of samples. Second, we can use workspace sampling (Van
Den Berg and Overmars, 2005; Zucker et al., 2008; Rickert
et al., 2014; Luna et al., 2020), where state space samples
are taken from the restriction of collision-free sets in
workspace. We can do workspace sampling by focusing on
narrow passages (Van Den Berg and Overmars, 2005), or by
selecting promising points on the robot and guiding them
through the workspace (Luna et al., 2020). Our approach is
similar in that we use lower-dimensional sampling on the

base space and we select base spaces based on a density
criterion (Xanthidis et al., 2018). However, we differ by
smoothly changing between path and graph restriction
sampling, and by using a recursive path section method to
efficiently find solution paths.

Closely related to low-dimensional sampling is the
concept of guide paths (Tonneau et al., 2018; Ha et al.,
2019). A guide path is a solution on the base space, which
we use to restrict sampling on the state space (Palmieri
et al., 2016). Guide paths are often used in contact planning
(Bretl, 2006; Tonneau et al., 2018), where we can often
give sufficiency conditions on when a feasible section
exists (Grey et al., 2017). When no feasible section exists,
some methods fail while other gradually shift towards
graph restriction sampling (Grey et al., 2017). It is also
possible to compute multiple guide paths which increase
our chance to find a feasible section (Vonásek and Pěniĝka,
2019; Ha et al., 2019; Orthey et al., 2020). While we also
sample along guide paths (path restriction sampling), we
differ in two ways. First, we use adaptive restriction
sampling to gradually change sampling from path to graph
restriction, whereby we guarantee asymptotic optimality.
Second, we use a recursive path section method to quickly
find feasible path sections in high-dimensional state
spaces.

2.3. Exploiting additional information

Fiber bundles are a way to exploit additional information.
Other approaches, complementary to fiber bundles, ex-
ists. One approach is region-based decomposition. In a
region-based decomposition, the problem is divided into
regions in which planning becomes computationally
efficient (Toussaint and Lopes, 2017; Orthey et al., 2020).
Such an approach can be done in two ways. First, the
workspace can be divided (Plaku et al., 2010; Vega-
Brown and Roy, 2018), for example, using subdivision
grids (Plaku, 2015), Delaunay decompositions (Plaku
et al., 2010), or convex regions (Deits and Tedrake,
2014; Vega-Brown and Roy, 2018). Second, the solu-
tion path space can be divided (Farber, 2008), for ex-
ample, by using the notion of homotopy classes
(Munkres, 2000), where two paths are considered to be
equivalent if we can deform them into each other. Ho-
motopy classes are closely related to the notion of to-
pological complexity (Farber, 2017), the minimal number
of regions in state space which are collapsible into a point
(null-homotopic). Several practical solutions exists to
compute path homotopy classes, like the H-value
(Bhattacharya et al., 2012; Bhattacharya and Ghrist,
2018), simplicial complices (Pokorny et al., 2016a),
task projections (Pokorny et al., 2016b), or mutual
crossings of robots (Mavrogiannis and Knepper, 2016).
However, all those approaches often become computa-
tionally intractable for high-dimensional systems, mul-
tiple robots, or nonholonomic constraints. Fiber bundles

6 The International Journal of Robotics Research 43(1)

are a complementary effort to organize regions on dif-
ferent levels of abstraction (Orthey and Toussaint, 2020).

Apart from region-based decompositions, we identify
three other methods to exploit additional information.
First, we can exploit distance information in workspace to
compute sets of feasible states (Quinlan, 1994), which
can be used to plan safe motions (Bialkowski et al.,
2016), or to compute covers of free space (Lacevic
et al., 2016; Lacevic and Osmankovic, 2020). Second,
we can exploit differentiable constraints when available
(Toussaint et al., 2018; Henkel and Toussaint, 2020).
Third, we can exploit alternative state space represen-
tations, for example, by using topology-preserving
mappings (Zarubin et al., 2012; Ivan et al., 2013). This
is complementary to our approach, in that Zarubin et al.
(2012) tries to find alternative representations of a state
space, while we concentrate on finding simplifications of
a given space.

2.4. Fiber bundles and prior approaches

Fiber bundle planners exploit a number of projections to ac-
celerate planning performance. Prior approaches using pro-
jections are the KPIECE planner (Şucan and Kavraki, 2009),
which uses a projection onto a simplified space, and the SBL
planner (Sánchez and Latombe, 2003a), which plans
using a simplified grid of the state space. However, most
prior approaches are limited in the number of projections
(Şucan and Kavraki, 2009; Cortés et al., 2008), the
number of robots (Vidal et al., 2019), use only holonomic
constraints (Zhang et al., 2009), use only Euclidean
spaces (Reid et al., 2019, 2020), or work only in specific
situations (Gochev et al., 2012; Kim et al., 2015). Instead,
we can apply fiber bundles to any manifold space (we
show it for compound spaces including the special Eu-
clidean and orthogonal groups in 2 d and 3 d), any finite
number of projections (up to 98 in our evaluations), any
finite number of robots (up to eight in our evaluations)
and any nonholonomic constraint (for Dubin’s state
spaces in our evaluations). With fiber bundles, we also
provide a shared vocabulary, which can unify methods
like path restriction sampling (Zhang et al., 2009;
Tonneau et al., 2018; Vidal et al., 2019), or graph re-
striction sampling (Grey et al., 2017; Orthey et al., 2018;
Reid et al., 2020). Since we also provide an open source
implementation in OMPL, we can benchmark different
multilevel strategies (Appendix C) and we can show the
benefit of fiber bundles compared to classical motion
planners (Section 8).

3. Background on optimal motion planning

Let R1, …, RM be M robots with associated (component)
state spaces Y1, …, YM, respectively. We can combine the
robots into one generalized robot R with associated
(composite) state space X = Y1 ×/ × YM.

To each state space X, we add two complementary
structures. First, we add a constraint function f: X→ {0, 1}
on X which takes an element x in X and returns zero if x is
feasible and one otherwise. Examples of constraints are
joint limits, self-collisions, environment-robot collisions
and robot-robot collisions. Second, we add a steering
function ψ, which takes two elements x1 and x2 in X as input
and returns a path steering the robot from x1 to x2 (while
potentially ignoring constraints). We denote a state space X
together with the constraint function f and the steering
function ψ as a planning space (X, f, ψ). The planning
space implicitly defines the free state space as Xf = {x 2
Xjf(x) = 0}.

Given a planning space, we define a motion planning
problem as a tuple ðxI ,XG,X Þ. To solve a motion planning
problem, we need to develop an algorithm to find a path
from the initial state xI2Xf to a desired goal region XG4 Xf.
Often, we are not only interested in some path, but in a path
which optimizes a cost functional c :X I →R≥0 whereby I is
the unit interval and XI is the set of continuous paths from I
to X with finite length (Karaman and Frazzoli, 2011; Janson
et al., 2018). We define the optimal motion planning
problem as finding a path from xI to XG minimizing the cost
functional c.

4. Multilevel motion planning

Let X be a state space and let XK → πK�1…→ π1X1 be a
multilevel abstraction of X such that XK = X, and πk are
projections from a state space Xk to a state space Xk�1. Each
projection πk: Xk�1 → Xk is modeled as a fiber bundle (see
Section 4.1). Given a start configuration xI 2 XK, a goal
region XG 4 XK, and an objective cost functional c, we
define the optimal multilevel motion planning problem as
the tuple (xI, XG, X1,…, XK) asking us to find a path from xI
to XG while minimizing the cost c. Thus, by defining an
optimal multilevel motion planning problem, we generalize
optimal motion planning (Section 3) by adding additional
information.

In the following sections, we discuss the framework of
fiber bundles which provides us with the concepts of bundle
restrictions and bundle sections. Those concepts will be
used to define primitive methods (Section 5), which are
fundamental to create bundle planners which exploit those
primitive methods and plan efficiently over fiber bundles
(Section 6).

4.1. Fiber bundle formulation

To model multiple levels of abstractions of state spaces, we
use the framework of fiber bundles (Steenrod, 1951;
Husemoller, 1966; Lee, 2003). A fiber bundle is a tuple (F,
X, B, π), consisting of the total space X, the fiber space F, the
base space B and the projection map

π :X →B: (1)

Orthey et al. 7

The mapping π needs to fulfill two properties:

1. Union of Fibers: The total space X is a (disjoint) union of
copies of the fiber space F, parameterized by the base space
B (Lee, 2003). This means that, if we take any element b in
B, the preimage π�1(b) is isomorphic to the fiber space F.

2. Local Product Space: The total space X locally equals
the product space B × F. This means, if we take any
element b in B, there exists a neighborhood U (an open
set containing b) such that the preimage π�1(U) is
homeomorphic to U × F (Lee, 2003).

In other words, a fiber bundle locally has the structure of
a product space, and π provides a projection from the total
space X to a “parameterization” of fibers in B. This local
product structure and the projection π aligns with the terms
of equivalence classes and quotient spaces as described in
Appendix A. Our main motivation for leveraging the ter-
minology of fiber bundles are the notions we introduce next.

4.2. Bundle restrictions

Given a fiber bundle (F, X, B, π), and a subset U 4 B, a
bundle restriction X jU4X is the subset of the total space
that projects to U. This set X jU ¼ π�1ðUÞ is called the
restriction of X to U (Tu, 2017).

We consider three kinds of restrictions. First, given a
point xB on the base space, we use its restriction
FjxB ¼ π�1ðfxBgÞ. Note that we call FjxB a fiber as it is,
by definition, isomorphic to F (Assertion 1.). We visualize
this in Figure 3 (Left). Second, given a path pB: I→ B on the
base space, with I = [0, 1] the unit interval, we have its
restriction X jpB ¼ π�1ðfpBðtÞ : t 2 IgÞ (Figure 3, Middle).

And third, given a graph GB on the base space, we have the
graph restriction π�1(GB) 4 X, where we unproject the
union of all its vertices and edges (Figure 3, Right).

We use these three restrictions for different computations.
First, we use point restrictions (fibers) to lift base space ele-
ments up to the total space (Section 4.3). Second, we use path
restrictions to quickly compute sections, which are paths on the
total space constraint to the path restriction (Section 4.3 and
Section 5.4). Third, we use graph restrictions to formulate
restriction sampling, that is, sampling restricted to elements of
the total space that project onto the base space graph (Section
5.1). It is important to note that restriction sampling is dense in
the free total space, if the graph on B is dense. We use this
denseness property to prove probabilistic completeness and
asymptotic optimality (Section 7).

4.3. Bundle sections

Given a fiber bundle (F, X, B, π) and a subset U 4 B of the
base space, a section ofU is amap s:U→ X such that π(s(u)) =
u (Lee, 2003). In other words, while a restriction X jU un-
projects U to all elements x 2 X that project to U, a section
maps each u2U to just one specific element x2X that projects
to u (It also follows, that sðuÞ 2X jU for any section s.). We
define useful cases of sections in the following.

4.3.1. Lift. When U contains only a single element {b}, we
call the section a lift. A lift s(b) takes as input an element b in B
and returns an element x on the total space. We often like to
single out a specific element x by additionally choosing a fiber
space element f, whereby we overload the lift as s(b, f). In the
case ofX being a product space, we define the lift as s(b, f) = (b,
f). However, if X → B is not trivial, the base space element b
defines an isomorphic transformation of the fiber space (in-
cluding the fiber element f), which in turn uniquely defines the
element x. In this work, all bundle spaces are trivial except the
Mobius strip. For the Mobius strip, we define the transfor-
mation as a linear transformation, involving a translation of the
fiber space (here: the unit [0, 1] interval) around the circle
while simultaneously rotating the fiber space.

Figure 3. Bundle sections on fiber bundle X→ B with base path {b1, b2, b3, b4, b5}. We show three interpolated sections on the bundle
space: L2 section (solid line), L1 fiber first section (dashed line), and L1 fiber last section (dotted line).

8 The International Journal of Robotics Research 43(1)

4.3.2. Path section. When the subset U is an interval,
we call the section a path section. A path section of a path
pB: I → B is itself a path p: I → X such that pB = π◦p.

Our algorithms will aim to find feasible path section, that
is, feasible unprojections of paths in the base space to paths
in the full space. We use three interpolation methods to this
end. All three methods take as input a base path pB and two
total space elements x1 and x2 in X. Let πF be the projection
of the total space onto the the fiber space (i.e., orthogonal to
the base space projection π). We then compute fiber space
elements f1 = πF(x1) and f2 = πF(x2) that introduce coor-
dinates along the fibers, and which we use to interpolate.
Each method differs by howwe interpolate between f1 and f2
along the path restriction π�1(pB) (see also Figure 4).

4.3.3. L2 section. To interpolate a section, we can use a
straightforward L2 section. To interpolate an L2 section,
we use the shortest path under the L2-norm, which is
simply the linear interpolation

lL2ðtÞ ¼ ð1� tÞf1 þ tðf2 � f1Þ: (2)

We then compute the section as

pðtÞ ¼ sðpBðtÞ, lL2ðtÞÞ (3)

by lifting each path base element to the bundle space. We
use the L2 section mainly to compute quotient space metrics
(Section 5.2).

4.3.4. L1 section. An alternative to L2 sections are L1

sections. In an interpolation with an L1 section, we compute
the section as

pðtÞ ¼ sðpBðtÞ, lL1ðtÞÞ (4)

with the interpolation

lL1 ¼

8><
>:

f1, if t <
1

2

f2, if t ≥
1

2

(5)

We use two flavors of L1 sections. The first flavor is
fiber first (FF) sections, where we use the adjusted base
path as

pFFðtÞ ¼
pBð0Þ, if t <

1

2

pB

�
2

�
t � 1

2

��
, if t ≥

1

2

8>><
>>:

(6)

The second flavor is L1 fiber last (FL) sections, where we
use the base path as

pFLðtÞ ¼

8><
>:

pBð2tÞ, if t <
1

2

pBð1Þ, if t ≥
1

2

(7)

Both fiber first and fiber last L1 sections are corner-
stones of our find section method, which we will use
alternately to find feasible sections (see Section 5.4 for
details).

4.4. Bundle sequences

With a fiber bundle, we model a single state space ab-
straction. To model multiple levels of abstraction, we can
chain fiber bundles into sequences. A fiber bundle se-
quence is a tuple (X1:K, F1:K�1, π1:K�1) such that the k-th
base space is equal to the k � 1-th total space. We write
such a sequence as

XK →
πK�1XK�1 →

πK�2…→ π1X1 (8)

whereby we call the space Xk the k-th bundle space.

4.5. Admissible fiber bundles

An important type of fiber bundles are the ones using
admissible projections (Orthey et al., 2018). An admis-
sible projection is a projection preserving the feasibility
of a state. This is important to preserve probabilistic
completeness and asymptotic optimality. We next define
admissible projections and discuss the corresponding
notion of admissible fiber bundles.

Let f and fB be constraint functions on X and B, re-
spectively. Given the constraint functions, we can define
the free total space Xf and the free base space Bf (see
Section 3). For an admissible projection, we require the
projection mapping to fulfill the first two requirements
(Assertions 1 and 2 above) plus the following third
requirement:

3. Admissible: The projection mapping does not invali-
date solutions. This means, if we map the free state
space Xf via π onto the base space, then the image π(Xf)
is a subset of the free base space Bf. Or, equivalently,

Figure 4. Bundle sections on fiber bundle X → B with base path
fb1; b2; b3; b4; b5g. We show three interpolated sections on the
bundle space: L2 section (solid line), L1 fiber first section (dashed
line) and L1 fiber last section (dotted line).

Orthey et al. 9

fB(π(x)) ≤ f(x) for any x 2 X (Orthey and Toussaint
2019).

If a projection mapping is admissible w.r.t. given f and
fB, we call the fiber bundle an admissible fiber bundle.
Analogously, if a sequence of fiber bundles contains only
admissible projections, we call it an admissible fiber bundle
sequence. It is important to note that admissibility is a
requirement, if we like to prove probabilistic completeness
or asymptotic optimality.

Using admissible fiber bundle (sequences), we thus
can tie together the notions of quotient spaces, constraint
relaxations and admissible heuristics. First, we can in-
terpret fiber bundles as a generalization of constraint
relaxations (Orthey and Toussaint, 2019), where paths
on the base space are lower bound estimates on solution
paths on the total space. Second, we can use a solution on
the base space as an admissible heuristic (Aine et al.,
2016) and exploit it by using either restriction sam-
pling, by using a quotient space (base space) metric
(Passino and Antsaklis, 1994; Pearl, 1984), or by
computing sections along a given base space path
(Zhang et al., 2009).

4.6. Examples of fiber bundles

To make the discussion more concrete, we discuss two
(multilevel) abstractions which are often used in motion
planning.

4.6.1. Prioritized multi-robot motion planning. To plan
motions for multiple robots, we can prioritize the robots
(Erdmann and Lozano-Perez, 1987; Ma et al., 2019).
Given M robots, we can order them, then plan for the first
robot and use its motion as a constraint on the motion of the
next robot. We can formalize this as a fiber bundle
sequence

Y1 :M → πM�1Y1 :M�1 →
πM�2/→ π1Y1 (9)

whereby Ym is the state space of the m-th robot and Y1:m is
the Cartesian product of the state spaces Y1, …, Ym. In the
fiber bundle sequence, we remove, in each step, the con-
figuration space and the geometry of the least important
robot. We can then either plan a path in Y1 and use it as a
constraint for the next robot (i.e., finding a feasible section
in the path restriction). This is known as path coordination
(Siméon et al., 2002). Or we use the graph on Y1 to restrict
sampling for the remaining robots, which is known as graph
coordination (Svestka and Overmars, 1998). In practice, we
can realize graph coordination either by using an oracle to
guide expansion (Solovey et al., 2016) or by expanding
dimensionality when conflicts arise (Wagner and Choset,
2015).

4.6.2. Tangent bundle and path-velocity decomposition. When
planning for a dynamical system, we often can simplify

planning using a tangent bundle decomposition. Given a state
space X we impose a tangent bundle X ¼ TM ¼ M ×Rn

with projection

M ×Rn → πM (10)

whereby n = dimM, Rn is the fiber space andM is the base
space. We call M the configuration space and TM the
tangent bundle. Planning on tangent bundles often fol-
lows a two-step approach. First, we compute a path pM on
the configuration space M (the base space) avoiding
obstacles and self-collisions. Second, we compute a
velocity along the path, that is, a time reparameterization.
Such a time reparameterization is a path section of pM and
we can find such a section by solving a convex optimi-
zation problem (Bobrow et al., 1985), which we can solve
efficiently (Pham and Pham, 2018). To guarantee com-
pleteness, however, we need to either plan on the full
tangent bundle TM (LaValle and Kuffner Jr, 2001) or
track valid speed profiles along paths on M (Pham et al.,
2017).

5. Primitive methods on fiber bundles

To exploit fiber bundles, we derive a set of primitive
methods. This includes methods to sample the base space, to
compute a metric, to select a bundle space to grow next, and
to rapidly find a feasible section. To implement each
method, we develop several different strategies and discuss
how they influence the algorithms. To select the best
strategies for each algorithm, we perform a meta-analysis in
Appendix C.

To use the primitive methods, we assume that every
bundle space Xk has access to the following fiber bundle
specific functions:

1. A fiber space Fk = Xk/Xk�1

2. A base space projection πk: Xk → Xk�1

3. A fiber space projection πFk :Xk →Fk

4. Projected start state xkI and goal region X k
G

5. A graph Gk = (Vk, Ek) containing |Vk| vertices and |Ek|
edges

The primitives will be used in the development of the
bundle planners (Section 6), where we exploit primitives for
improved planning performance.

10 The International Journal of Robotics Research 43(1)

5.1. Restriction sampling

In restriction sampling, we sample states on the total space
Xk by sampling exclusively in the graph restriction induced
by the graph on the base space Xk�1 (see Section 4.2), as we
detail in Alg. 1. We first check if the base space Xk�1 exists
(Line 1.1). If it does not exists, we revert to a standard
sampling method like uniform sampling (Line 1.6). If it
does exists, we first sample a base space element (Line 1.2),
then use it to sample a fiber space element (Line 1.3) and
finally lift the base space element to the bundle space using
the fiber space element (Line 1.4). The lift operation de-
pends on if the bundle is trivial, in which case we just
concatenate base element and fiber element. If the bundle is
non-trivial (like the Mobius strip), we use the base element
to index the correct fiber space, then use the fiber element to
index the correct bundle space element (see Section 4.3).

To implement the SAMPLE function, we use uniform
sampling of the space. However, other sampling techniques
are certainly possible, like Gaussian sampling (Boor et al.,
1999), obstacle-based sampling (Amato et al., 1998),
bridge sampling (Hsu et al., 2003), maximum clearance
(Wilmarth et al., 1999), quasi-random (Branicky et al.,
2001), utility-based (Burns and Brock, 2005), or deter-
ministic sampling (Janson et al., 2018; Palmieri et al.,
2019). To guarantee probabilistic completeness and as-
ymptotic optimality, we only need to verify that those
sequences are dense.

The main method of restriction sampling is the SAM-

PLEBASE method. In the SAMPLEBASE method, we sample the
graph Gk�1 on the base space. While numerous methods
exist to sample a graph (Leskovec and Faloutsos, 2006), we
found five methods particularly important.

5.1.1. Random vertex sampling. First, we can choose a
vertex at random, which we refer to as Random Vertex (RV)
sampling (Leskovec and Faloutsos, 2006). In RV sampling,
we choose a random integer between 1 and |V| which
uniquely defines a vertex on the graph G. This sampling is
particularly fast (O(1) operations), but might be overly
constrictive if we sample from a tree or a graph with long
edges. However, for large graphs, this sampling procedure
is often the only alternative to not slow down sampling.

5.1.2. Random edge sampling. Second, we can choose an
edge at random, then pick a state on this edge, a method we
refer to as Random Edge (RE) sampling (Leskovec and
Faloutsos, 2006). This method requires two operations, first
to pick an edge, then to pick a number between 0 and 1 to
determine the state on the edge. This method seems to be
superior if the graph is sparse and has long edges, in par-
ticular edges going through narrow passages.

5.1.3. Random degree vertex sampling. Third, we can
choose a vertex at random, but biased towards vertices with
a low degree (number of outgoing edges). We refer to this as
Random Degree-Vertex (RDV) sampling. With RDV

sampling, we bias samples to vertices which are either in
tight corners or inside of narrow passages. Vertices in large
open passages often have many neighbors and thereby a
large degree. This method, however, requires to update a
probability function which tracks the degrees of each
vertex.

5.1.4. Path restriction sampling. Fourth, we can choose a
sample on the lowest cost path on the graph, a method we
refer to as path restriction (PR) sampling. We can utilize PR
sampling in two ways. Either, we sample on the path re-
striction with a fixed probability βfixed. This is similar to the
fixed tunnel radius proposed by Reid et al. (2019). Or, we
first sample exclusively on the path restriction, then grad-
ually decay towards the fixed path bias. We call this method
PR decay sampling.

PR decay sampling allows us to model a change in belief.
It is often true that the shortest path on the base space
contains a feasible section, which we should search for by
exclusively sampling on the path restriction (Orthey et al.,
2018). If we do not find a valid section, we should gradually
dismiss our belief that a section exists and try to sample the
graph restriction instead. To model this change in belief, we
use an exponential decay function to smoothly transition
from probability 1 down to the fixed probability βfixed using
a decay constant λ. See Appendix B for the definition of
exponential decay.

Before using PR decay sampling, we simplify the path.
Simplifying the path is similar to the local path refinement
method (Zhang et al., 2009), where a path is optimized to
increase its clearance. For this operation, we use a simple
short-cutting path optimizer, which does not slow down
planning in high-dimensional spaces.

We use a path optimizer with a cost term for path length.

5.1.5. Neighborhood sampling. Fifth, we can choose a
sample not directly on the graph, but in an epsilon
neighborhood. We refer to this as neighborhood (NBH)
sampling. NBH sampling is helpful when there is a path
through a narrow passage which comes close to its
boundary. Those paths often do not have a feasible section.
Instead, if we would perturbate the path slightly, we can
often find a path admitting a feasible section. With NBH
sampling, we first sample a configuration x exactly on the
graph, and then sample a second configuration x0 which we
sample uniformly in an epsilon ball around x. In practice,
we use an exponential decay (Appendix B) to smoothly
vary the size of the neighborhood from zero up to epsilon.
With NBH sampling, we can often solve problems where a
solution through a narrow passage has few or no samples,
while using nearby samples allows us a bit more wriggle
room. Note that instead of uniform epsilon sampling, we
could also use a Gaussian distribution with mean x and
epsilon variance (Reid et al., 2019). However, in pre-
liminary testing, we could not observe a difference
between them.

Orthey et al. 11

5.2. Bundle space metric

An essential component of bundle algorithms are the nearest
neighbor computations, which depend on choosing a good
metric function. We discuss two possible metrics, the in-
trinsic bundle metric (ignoring the base space) and the
quotient space metric (exploiting the base space).

5.2.1. Intrinsic bundle metric. To straightforwardly attach a
metric to the bundle space, we use the geodesic distance
between two points while ignoring the base space. We
compute this intrinsic metric on X as

dðx1, x2Þ ¼ dX ðx1, x2Þ (11)

While this is a naive way to compute the metric, we note
that using base space information is often costly, and the
total space metric is often good enough (Orthey and
Toussaint, 2019).

5.2.2. Quotient space metric. If a base space is avail-
able, we can consider it as a quotient space, on which we
can define a quotient space metric (Guo et al., 2019). To
define a quotient space metric between two states, we
first project both states onto the base space, compute a
shortest path pB using the base graph and then inter-
polate an L2 section along the path restriction X jpB (see
Section 4.3).

In particular, given two points x1 and x2 in Xk, we project
them onto the base space Xk�1 to yield b1 = π(x1) and b2 =
π(x2). We then compute the nearest vertices v1 and v2 on the
graphGk�1 and we compute a path onGk�1 between v1 and
v2 using the A* algorithm with the intrinsic base space
metric as an admissible heuristic. Finally, we use the fiber
space projection of x1 and x2 to compute fiber space ele-
ments f1 = πF(x1) and f2 = πF(x2), which we use to integrate
an L2 section (Section 4.3). We then compute the bundle
space metric as

dðx1, x2Þ ¼

dX ðx1, x2Þ v1 ¼ v2

dFðf1, f2Þ
þdBðy1, v1Þ
þdBðy2, v2Þ
þdGkðv1, v2Þ

otherwise

8>>>>>>>><
>>>>>>>>:

(12)

with dF being the fiber space metric (L2), dB the base space
metric and dGk the length of the shortest path onGk between
vertices under the base space metric.

While the quotient space metric is more mathemati-
cally sound, there are two practical problems. First,
computing this metric is costly, because we need to
perform a graph search operation. Second, the graph on
the base space might not yet be dense, thereby potentially
returning values leading to an inadmissible heuristic,
which in turn would mislead the planner on the bundle
space.

5.3. Bundle space importance

In each iteration of multilevel motion planning, we make a
choice about expanding a graph by selecting a level. To
select a level, we attach an importance function to each
bundle space, which we use to rank the bundle spaces. We
develop three different importance strategies.

5.3.1. Uniform. In uniform importance, we select all
bundle spaces an equal amount of times. This is similar to
round-robin change, similar to scheduling operations
(Russell and Norvig, 2002). Here we use a slight vari-
ation, where we compute the importance based on
the number of vertices, thereby ensuring a uniform ex-
pansion of each level. In particular, for bundle space Xk

with graph Gk and |Vk| vertices, we compute its impor-
tance as 1/|Vk| + 1.

5.3.2. Exponential. To densely cover spaces with higher
dimensions, we usually require more samples. In general,
the sampling density is proportional to N1/d where N is the
number of samples and d the dimensionality (Hastie et al.,
2009). Therefore, we should select the space with the lowest
density first, thereby guaranteeing equal sampling density
across all spaces. We can compute an exponential impor-
tance as 1/|Vk|

1/d + 1 which reflects an exponential increase
of samples in higher dimensions. This idea is similar to the
selection of bundle spaces using a geometric progression
(Xanthidis et al., 2018). This is also related to multilevel
monte carlo (Giles, 2015) and sparse grid methods
(Bungartz and Griebel, 2004).

5.3.3. Epsilon greedy. Whenever we find a graph con-
necting initial and goal state on the base space, it seems
reasonable to greedily exploit this graph to find a path on
the bundle space. This strategy is not complete, since the
graph might not yet contain a feasible section (see Section
4.2). We can, however, create a complete algorithm by
extending the base space with an epsilon probability while
extending the bundle space the rest of the time. We
compute this as

f ðkÞ ¼
�
ϵK�k � ϵK�kþ1 k > 1
ϵK�1 otherwise

(13)

whereby k is the bundle space level andK is the total number
of bundle spaces. We then compute the importance for the
k-th bundle space as 1/|Vk|/f(k) + 1, reflecting our desire to
expand recent levels more aggressively.

5.4. Finding path sections

Finding path sections quickly and reliably is one of the cor-
nerstones of all bundle planners. In this section, we use the
interpolation methods of Section 4.3 to develop a recursive
path section algorithm, which we depict in Alg. 2. For this to
work, we need to have at least a base space (Line 2.1).We then

12 The International Journal of Robotics Research 43(1)

compute the shortest path on the base space (Line 2.2) and
recursively compute a section, either by starting from an
L1 fiber first section (Line 2.3) or if unsuccessful, by starting
from an L1 fiber last section (Line 2.5).

To recursively compute a section, we show the pseu-
docode in Alg. 3. We terminate the algorithm if we reach a
certain depth dMAX (Line 3.3) or if we reach the goal region
(Line 3.8). Inside each recursion iteration, we interpolate
an L1 section, either fiber first (if FF is true) or fiber last (if
FF is false) (Line 3.6). We then propagate the system along
the section while valid (Line 3.7) and return the last valid
state.

If we do not reach the goal state with the last valid
state, we do up to bMAX sidesteps along the fiber space.
Sidestepping means that we project the last valid state
onto the base space (Line 3.11), then sample a random
fiber space element (Line 3.13) and lift the states to the
bundle space to obtain a state xk (Line 3.14). We then
check if we can move from the last valid state to the state
xk (Line 3.15). Since both states have the same base space
projection, we call this a sidestep (i.e., a step orthogonal
to the base space). If the motion is valid, we clip the
remaining base path (Line 3.17) and recursively call the
algorithm (Line 3.18). In the recursion call, we increase
the depth, use the clipped base path segment and change
the interpolation method from fiber first to fiber last. We
change the interpolation at this point, because we observe
an alternation between interpolation methods to sub-
stantially improve runtime.

5.4.1. Nonholonomic constraints. In the case of holo-
nomic constraints, we can use the L1 interpolation (Line
3.6) and the base space segment (Line 3.17) to follow the
path restriction exactly. However, if we have non-
holonomic constraints, we often cannot follow the path
restriction exactly, in particular if the base space path is
piece-wise linear. Note that a base space path is often
piece-wise linear if we do not impose additional
smoothness assumptions (Vidal et al., 2019; Hönig et al.,
2018).

To still compute path sections over piece-wise linear
base space paths in the nonholonomic case, we do a two-
phase approach. First, we compute the interpolation
values as in Section 4.3, but only at discrete points, which
provides us with a set of points on the bundle space.
Second, we interpolate between those points by using the
nonholonomic steering function. While we might deviate
from the base path restriction, we follow, however, the
base path restriction as close as the steering function
allows us. This approach is similar to the idea of inter-
polating waypoints with dynamically feasible path seg-
ments, which has been done for flying quadrotors
(Richter et al., 2016) and for underwater vehicles (Yu
et al., 2019). However, we differ by first interpolating
values for the fiber spaces along the base space path. The
remaining computation in Alg. 3 remains exactly as in the
holonomic case.

6. Bundle space motion planners

To solve a multilevel motion planning problem, we
develop a set of algorithms generalizing existing motion
planners to fiber bundles. All those planners share the
same high-level structure, which we call a BUND-

LEPLANNER (Alg. 4). In the BUNDLEPLANNER method, we
first initialize a priority queue sorted by the importance of
each bundle space (Line 4.1). We then iterate over all
bundle spaces, try to find a section on the k-th bundle
space (Line 4.3) and then push the k-th bundle space into
the priority queue (Line 4.4). We then execute the while
loop while a planner terminate condition (PTC) is not
fulfilled for the k-th bundle space (Line 4.5). Inside the
loop, we select the most important bundle space, grow the
graph or tree and push the space back into the queue (Line
4.6 to 4.8). We terminate if the PTC for the K-th bundle
space has been fulfilled. This means we either terminate
successfully, found the problem to be infeasible or reach a
timelimit.

All bundle space algorithms are alike in sharing the same
high-level structure; each bundle space algorithm differs in
their GROW function (Line 4.7) and their primitive methods
(Section 5).

6.1. Bundle planner variants

The BUNDLEPLANNER algorithm is used to develop novel
algorithms by changing the GROW function. To implement
the GROW function, we can utilize almost any single-level
planning algorithm. In our case, we use the algorithms RRT,
RRT*, PRM, and PRM* (please consult Table 1 for ab-
breviations of algorithms).

All grow functions in a multilevel versions of our
algorithms differ from their single-level version in four
points. First, we replace uniform sampling by restriction
sampling, as we detail in Section 5.1. Algorithms might
differ in how we implement graph sampling in restric-
tion sampling. Second, when pushing a new bundle
space into the priority queue, we check for a feasible
section over the solution path on the last bundle space, as
we detail in Section 5.4. This computation is equivalent
for each bundle planner. Third, we rank bundle spaces
based on a selection criterion, which we detail in Section
5.3. Algorithms might differ in the type of selection
criterion we employ. Fourth, we adjust the metric on the
bundle space, which affects both nearest neighbors
computation and the steering method, as we detail in
Section 5.2. While different metrics are possible

Orthey et al. 13

(Orthey et al., 2018), we use the intrinsic bundle metric
for all algorithms (as determined by our meta-analysis in
Appendix C).

6.2. QRRT

In Alg. 5, we show the QRRT algorithm. We previously in-
troducedQRRTinOrthey and Toussaint (2019).We differ here
by using an exponential importance primitive (Section 5.3.2)
and by adding the find section primitive (Section 5.4). The
remaining structure, however, remains unchanged. In detail,
we sample a random element from the bundle space (Line 5.1)
using restriction sampling (Section 5.1). We then choose the
nearest vertex from the tree (Line 5.2) and steer from the
nearest to the random element (Line 5.3). We then check if the
motion is collision-free and add the new state to the tree. Note
that we stop steering if the distance goes above a threshold,
similar to RRT (LaValle and Kuffner Jr, 2001).

6.3. QRRT*

While QRRT performs well in our evaluations, we can
improve upon QRRT by developing an asymptotic
optimal version. We call this QRRT* and depict the
algorithm in Alg. 6. By developing QRRT*, we gen-
eralize RRT* (Karaman and Frazzoli, 2011) to multiple
levels of abstraction. To implement QRRT*, we use one
iteration of QRRT (Line 6.1), then compute k nearest
neighbors of the new state (Line 6.2). We choose the k as
k = kRRT log(N) whereby N is the number of vertices in
the tree (Karaman and Frazzoli, 2011). The parameter
kRRT can be chosen based on the dimension of the
problem (Karaman and Frazzoli, 2011; Kleinbort et al.,
2019).

After computing k nearest neighbors, we perform two
rewire operations (this dicussion follows closely Salzman
and Halperin (2016)). First, we rewire the nearest
neighbors to the new state (Line 5.4). Second, we rewire

14 The International Journal of Robotics Research 43(1)

the new state to the nearest neighbors (Line 5.7). We show
the rewire operation in Alg. 7. Inside the rewire algo-
rithm, we update the incoming edge of state y by checking
if the cost to come from state x (cost from initial state to x)
plus the cost to go from x to y is smaller than the cost to
come for state y. In that case, we update the graph by
removing all incoming edges into y and adding a directed
edge from x to y. Contrary to similar implementations
(Karaman and Frazzoli, 2011; Salzman and Halperin,
2016), we also update the tree Gk such that we can use
the same restriction sampling method for each algorithm.
While the grow method is similar to the RRT* method
(Salzman and Halperin, 2016), we note that much of the
complexity is encapsulated in the primitive methods
(Section 5), which we use to sample, to compute dis-
tances, to find sections and to choose a bundle space to
grow next.

6.4. QMP

In Alg. 8, we show the QMP algorithm, which we in-
troduced in Orthey et al. (2018). In the QMP algorithm,
we differ from QRRT by not growing a tree, but a graph
(Kavraki et al., 1996). QMP generalizes PRM in the
sense that QMP becomes equivalent to PRM when we
choose a single-level abstraction. The algorithm QMP
as presented here differs slightly from its original
conception (Orthey et al., 2018) in three points. First,
we use the epsilon greedy importance (Section 5.3.2)
instead of uniform importance to select a bundle space
to expand. Second, we use the intrinsic bundle metric
(Section 5.2) instead of the quotient space metric, which
we found to not scale well to high-dimensional state
spaces (see Appendix C). Third, we use the FINDSECTION

method to quickly check for sections (Section 5.4).

Table 1. List of Motion planning Algorithms Used in Experimental Section. Properties of the Algorithms are: Supporting Fiber Bundles
(FB), Being Probabilistically Complete (PC), and Being Asymptotically (Near-)Optimal (AnO).

Motion planner Description Origin paper FB PC AnO

QRRT Rapidly-exploring random quotient space trees (Orthey and Toussaint 2019) x x
QMP Quotient space roadmap planner (Orthey et al. 2018) x x
QRRT* Optimal version of QRRT This paper x x x
QMP* Optimal version of QMP This paper x x x
PRM Probabilistic roadmap planner (Kavraki et al. 1996) x
PRM* Optimal version of PRM (Karaman and Frazzoli 2011) x
LazyPRM* Optimal version of LazyPRM (Karaman and Frazzoli 2011) x
SPARS Sparse roadmap spanners (Dobson and Bekris 2014) x x
SPARS2 SPARS without dense graph (Dobson and Bekris 2014) x x
RRT Rapidly-exploring random tree (Lavalle 1998) x
RRTConnect Bidirectional RRT (Kuffner and LaValle 2000) x
RRT* Optimal version of RRT (Karaman and Frazzoli 2011) x
LazyRRT Lazy edge evaluation RRT (Kuffner and LaValle 2000) x
TRRT Transition-based RRT (Jaillet et al. 2010) x
BiTRRT Bidirectional TRRT (Jaillet et al. 2010) x
LBTRRT Lower bound tree RRT (Salzman and Halperin 2016) x x
RRTX RRT with pseudo-optimal tree (Otte and Frazzoli 2016) x x
RRT# RRT sharp (Arslan and Tsiotras 2013) x x
InformedRRT* Informed search RRT* (Gammell et al. 2014) x x
SORRT* Sorted InformedRRT* (Gammell et al. 2014) x x
SBL Single-query bidirectional lazy PRM (Sánchez and Latombe 2003b) x
SST Stable sparse RRT (Li et al. 2016) x x
STRIDE Search tree with resolution independent density estimation (Gipson et al. 2013) x
FMT Fast marching tree (Janson et al. 2015) x x
BFMT Bidirectional FMT (Janson et al. 2015) x x
BIT* Batch informed trees (Gammell et al. 2020) x x
ABIT* Advanced BIT* (Strub and Gammell 2020) x x
EST Expansive spaces planner (Hsu et al. 1999) x
BiEST Bidirectional EST (Hsu et al. 1999) x
ProjEST Projection EST (Hsu et al. 1999) x
KPIECE Kinodynamic motion planning By interior-exterior cell exploration (Şucan and Kavraki 2009) x
BKPIECE Bidirectional KPIECE (Şucan and Kavraki 2009) x
LBKPIECE Lazy BKPIECE (Şucan and Kavraki 2009) x
PDST Path-directed subdivision tree (Ladd and Kavraki 2004) x

Orthey et al. 15

6.5. QMP*

QMP* is similar as QMP, but we use a different k in each
iteration to choose the nearest neighbors. This k is chosen
such that the resulting algorithm is almost-surely asymp-
totically optimal (Karaman and Frazzoli, 2011). In general
we use k = kPRM log(N) with N being the number of vertices
in the graph. See also Solovey and Kleinbort (2020) for
recent developments on choosing the parameter kPRM.

6.6. Open source implementation

To make the algorithms freely available, we provide im-
plementations in C/C++, which we split into two frame-
works. The first framework is a graphical user interface
(GUI) where users can specify fiber bundles by providing
URDF (Unified Robotic Description Format) files for each
level and specify the bundle structure in an XML (Exten-
sible Markup Language) file. We then provide functional-
ities to step through each level and to visualize the lowest
cost path on each level. The code is freely available on
github.1

The second framework is the actual implementation of
fiber bundles, bundle algorithms, and primitives, which we
implement as a submodule of the Open Motion Planning
Library (OMPL) (Şucan and Kavraki, 2009). In particular,
we encapsulate our code as an OMPL planner class, which
we can use for benchmarking (Moll et al., 2015) or analysis.
This code is part of OMPL version 1.6.0 and includes a
high-level introduction, a tutorial, and additional demos.2

7. Analysis of bundle planners

Let XK → πK�1…→ π1X1 be a fiber bundle sequence. We like
to prove that, on this fiber bundle sequence, the algorithms
QRRT, QRRT*, QMP, and QMP* are probabilistically
complete (PC) and that QRRT* and QMP* are asymptot-
ically optimal (AO).

To prove those properties, we use two methods. First, we
state three assumptions on the importance function and the
datastructures, which we use to establish that restriction
sampling is dense. Second, we argue that the bundle al-
gorithms, when using restriction sampling, inherit the PC
and AO properties from their single-level counterpart.

7.1. Assumptions

We require three assumptions to hold true.

1. The importance function of each bundle space (Section
5.3) monotonically converges to zero (we select every
bundle space infinitely many times)

2. Restriction sampling is dense in X1

3. If restriction sampling is dense, the graph on the k-th
bundle space is space-filling in the connected initial
component

whereby the connected initial component is the set of
points in Xk which are path-connected3 to πk(xI), that is, to
the projection of the initial state onto the k-th bundle space.
A graph is said to be space-filling in a setU, if for any x inU
there exists a path in the graph starting at xI and converges to
x (Kuffner and LaValle 2011) (in the limit when running
time goes to infinity).

7.2. Proof that restriction sampling is dense

When stripping down to the essentials, we observe that
the bundle planners differ on the last level from non-
multilevel planners by replacing uniform sampling with
restriction sampling. While uniform sampling is dense in
the complete state space, restriction sampling differs, in
that we can prove it to be dense in the connected initial
component.

To prove denseness, we need some notations. First, a set
U is dense in X if the intersection of U with any non-empty
open subset V of X is non-empty (Munkres, 2000). We
abbreviate this by saying that a set is dense if its closure
cl(U), the smallest closed set containing U, contains the
space X. When using a sequence of samples α1, α2, …, we
can interpret the sequence as a set A ¼ fαij i2Ng. We can
then say that the sequence is dense in the space X if the
closure cl(A) contains X (or is equal to).

Let Ik be the connected initial component(on the bundle
space k) and let Ak be a restriction sampling sequence. To
prove Ak to be dense in Ik, we choose an arbitrary set U in Ik.
We then prove that there will be a non-empty intersection of
Uwith Ak, that is, given enough time, we will at least sample
once fromU. Our proof is inductive, that is, we prove it to be
true for k = 1, then use this to inductively argue for
arbitrary k.

In a preliminary version of the proof (Orthey and
Toussaint, 2019), we showed restriction sampling to be
dense in the free state space, which is true only if there is a
single connected component. To make the proof more
general, we replace the free state space here with the
connected initial component.

Theorem 1. Ak is dense in Ik for k ≥ 1.
Proof. By induction for k = 1, A1 is dense in X1 by
assumption and therefore dense in I1 since I1 4 X1. For
the induction step, we can assume Ak�1 to be dense in
Ik�1. Let U be a non-empty open subset of Ik. Since U is
open, πk�1(U) is open (by property of fiber bundle). By
induction assumption there exists a y in Ak�1 \ πk�1(U).
Consider an open set Vof the preimage π�1

k�1ðyÞ. Since Ak

is dense in π�1
k�1ðAk�1Þ (by definition of restriction

sampling), there exists an x in Ak \ Vwhich is a subset of
U. Since U was arbitrary, Ak is dense in Ik. □
Due to Theorem 1, we observe that restriction sampling

differs from uniform sampling by removing states which
cannot be feasible. Therefore, algorithms using restriction
sampling maintain all their properties, which we can inherit.

16 The International Journal of Robotics Research 43(1)

7.3. Inheritance of probabilistic completeness

A motion planning algorithm is probabilistically complete,
if the probability that the algorithm will find a path (if one
exists) goes to one as time goes to infinity. This property has
been proven for sampling-based planners, in the case of a
graph (Svestka, 1996) including the case of a tree (Kuffner
and LaValle, 2000).

Probabilistic completeness follows in our case directly
from the assumptions and our proof that restriction sam-
pling is dense. In particular, let us assume a given motion
planning problem to be feasible and containing a solution in
the interior of the free space. Since restriction sampling is
dense, by assumption, we have a space-filling graph con-
taining a path starting at the initial state and converging to
the goal state.

In the grow functions of QRRT, QRRT*, QMP, and
QMP*, we directly implement the corresponding versions of
RRT, RRT*, PRM, and PRM*, which all have been shown to
be probabilistically complete (see corresponding papers
listed in Tab. 1). They therefore necessarily need to construct
a space-filling graph (tree) (Kuffner and LaValle, 2011) and
all bundle space planners, when using restriction sampling,
inherit the probabilistic completeness property.

7.4. Inheritance of asymptotical optimality

An algorithm is (almost-surely) asymptotically (near-)op-
timal (AnO) (Karaman and Frazzoli, 2011; Salzman and
Halperin, 2016) if it converges to a cost at most (1 + ϵ) times
the cost of the optimal path. An algorithm is (almost-surely)
asymptotically optimal if it is AnO with ϵ = 0.

Similar to probabilistic completeness, we argue that
QRRT* and QMP* are asymptotically optimal, since this
property is inherited from RRT* and PRM* (Karaman and
Frazzoli, 2011), respectively. This is true, since on the last
level, we only change the sampling function from uniform
to restriction sampling. Since we showed restriction sam-
pling to be dense and we will select the last bundle space
infinitely many times, we can be sure that the optimality
properties are kept intact. Note that this line of reasoning is
slightly different from the proof of asymptotic optimality for
HBFMT (Reid et al., 2020), where Reid et al., (2020) define
a probability l with which they switch to use uniform
sampling, thereby guaranteeing optimality by actually re-
verting to BFMT. We, however, rely on the denseness
property of restriction sampling, thereby avoiding an uni-
form extension step.

Detailed proofs of asymptotic optimality for sampling-based
planner can be found in Karaman and Frazzoli (2011). See also
Salzman andHalperin (2016) and Solovey andKleinbort (2020)
for a treatise of asymptotic near-optimality.

8. Evaluation

To show the wide applicability of fiber bundles and bundle
algorithms, we apply them to a broad range of planning

scenarios. In particular, we evaluate our algorithms on four
low-dimensional and eight high-dimensional planning
scenarios, including computer animation, pregrasping,
multi-robot coordination, and nonholonomic constraints.
The dimensionality of the state spaces in the high-
dimensional case ranges from 21-dof (box folding) to
100-dof (hypercube). We compare our algorithms with
available algorithms implemented in the Open Motion
Planning Library (OMPL) as of May 2020 (Moll et al.,
2015). References and details of those algorithms are shown
in Table 1. All algorithms, except QMP, QMP*, QRRT, and
QRRT*, do not use the additional information which fiber
bundles provide. We like to show that fiber bundles are
helpful to solve scenarios which are near unsolvable using
classical sampling-based methods Kavraki et al. (1996);
Kuffner and LaValle (2000)

Evaluation Metrics: For all scenarios, we let each al-
gorithm run 10 times with a cut-off time limit of 60s. For the
low-dimensional scenarios, we report a success-cost plot
showing convergence rate and success rate over time. In this
case, we let the algorithms run for 60s and query their
current best cost with a 100Hz update frequency (i.e., every
0.01s). For the high-dimensional scenarios, we run two
separate evaluations. First, a pure runtime evaluation, where
we compare the average runtime on each scenario, com-
paring against all available OMPL planners. In this case,
planners run until they either find a solution or the cut-off
time limit has been reached. Second, we report on a success-
cost plot for our algorithms against four well performing
algorithms from OMPL, namely, RRTConnect, RRT*,
BIT*, and LBTRRT. In this case, all algorithms are run for
60s with best cost queries at 100 Hz update frequency.

Hardware: Concerning hardware, we use a 4-core
laptop running Ubuntu 18.04 with 20GB of RAM to run
the runtime evaluation on the high-dimensional planning
problems. For the low-dimensional planning problems and
the cost function evaluation on the high-dimensional
problems, we use a 4-core laptop running Ubuntu
16.04 with 8GB of RAM. Concerning parameters, our al-
gorithms are set as follows. For the FINDSECTION method, we
use dMAX = 3 and bMAX = 10. For path restriction sampling,
we use the decay constant λ = 10�3 and fixed probability
βfixed = 0.1. For QRRT, we use a maximal distance range of
0.2μwhereby μ is the measure of the space (same value as in
RRT or RRTConnect). For QMP, we use k = 10 to compute
nearest neighbors (same as in PRM). For QMP*, we use the
optimal number of nearest neighbors in each iteration as in
PRM* (Solovey and Kleinbort, 2020). The choice of
primitive methods has been independently optimized using
a meta-analysis (See Appendix C). We set any other pa-
rameters to be equivalent to the corresponding single-level
planner.

State Spaces: In all scenarios, the state spaces of the
robots are modeled using the following mathematical
spaces. For rigid bodies, we use SE(2) and SE(3), the special
Euclidean group in two and three dimensions, respectively
(Selig, 2004). The spaces in those groups model all rotations

Orthey et al. 17

and translations applicable to a rigid body in two or three
dimensions. For rotating joints, we use SO(2) and SO(3), the
special orthogonal group. The spaces in those groups model
all rotations about a fixed point of the robot. For all other
kinematic chains with rotational joints and joint limits, we
use the Euclidean space R

n of n dimensions.

8.1. Low-dimensional motion planning

In the low-dimensional motion planning evaluation, we
evaluate QMP, QMP*, QRRT, and QRRT* against
RRTConnect, RRT*, BIT*, and LBTRRT. This is done on four
low-dimensional planning problems as shown in Figure 6. We
let all planners run until time out and collect both time to find
the first solution and solution cost over time.

8.1.1. 2-dof disk problem (2 levels). The first scenario is a 2-
dof disk problem, where a small disk robot needs to traverse
a square with a narrow passage in the middle. For our bundle
algorithms, we use a projection onto a smaller inscribed disk
with half the radius of the original disk (see Figure 6). This
creates a fiber bundle as

R
2 →R

2 (14)

The evaluation results are shown in Figure 5 (Upper left).
RRTConnect performs best in terms of quickest conver-
gence to one hundred percent success rate, while BIT*
performs best by converging the fastest to the optimal
solution. All bundle planners can successfully solve this
problem with competitive results both in terms of success
rate (QRRT, QMP), and in terms of cost convergence
(QRRT*, QMP*).

8.1.2. 3-dof piano mover’s problem (2 levels). The second
scenario is the piano mover’s problem (Schwartz and Sharir,
1983), where a piano has to be moved on a planar floor from
one side of a house to the other side. As shown in Figure 6,
we impose a fiber bundle by inscribing a simpler shape into
the original piano, thus imposing a fiber bundle as

SEð2Þ→ SEð2Þ (15)

The evaluation results are shown in Figure 5 (Upper
right). BIT* and RRTConnect outperform in terms of
success rate, while BIT* also converges quickest to a low-
cost solution. All bundle planners perform slightly worse,
but still competitive in terms of runtime and cost
convergence.

Figure 5. Success-cost plots of the four low-dimensional planning scenarios. (a) 02D disk, (b) 06D Piano Mover’s problem, (c) 07D
Planar Manipulator, and (d) 06D Double L-Shape.

18 The International Journal of Robotics Research 43(1)

8.1.3. 7-dof planar manipulator (4 levels). In the third
scenario, we evaluate the planners on a 7-dof planar manip-
ulator task, as shown in Figure 6 (Lower left). For this scenario,
we impose four levels of abstractions, where we first project
the 7-dof robot onto a 4-dof robot by removing the last three
links. We then project onto a 2-dof robot by removing two
links andfinallywe project onto a 1-dof robot by removing one
link. The resulting fiber bundle can be written as

SOð2Þ ×R6 → SOð2Þ×R3

→ SOð2Þ×R1 → SOð2Þ: (16)

The evaluation results in Figure 5 (Lower left) show that
RRTConnect and LBTRRT perform best in terms of success
rate, while LBTRRTconverges quickest in terms of solution
cost. Both QMP and QMP* perform competitively in terms
of success rate and QMP* terms of cost convergence. QRRT
has slightly worse performance in terms of success rate, but
still solves the problem. QRRT*, however, does not solve all
runs of this problem.

8.1.4. 6-dof drone (2 levels). In the fourth scenario, a drone
has to traverse two trees to reach a goal state. The state space is
SE(3) with additional constraints on roll and pitch, but not yaw
(to prevent impossible maneuvers).We impose a fiber bundle as

SEð3Þ→R
3 (17)

by inscribing a small sphere inside the drone, thereby
reducing the state space to R

3. The evaluation results in
Figure 5 (Lower right) show RRTConnect to converge
quickest in success rate, with LBTRRT being fastest in cost
convergence. All bundle planners solve this problem, but
QMP* returns a slightly larger final cost compared to the
lowest cost found.

8.2. High-dimensional motion planning

For the high-dimensional planning scenarios, we con-
duct two evaluations. First, we run a large set of planners
from OMPL until a first solution is found (or a timeout
occurs) and report on the runtime. Those results are
evaluated for all available planners in OMPL, if they are
applicable to the problem at hand. This case is discussed
in Section 8.2.1 up to Section 8.2.8. Second, we run the
eight planners QMP, QMP*, QRRT, QRRT*, RRTCon-
nect, RRT*, BIT*, and LBTRRT on each scenario until
the timeout occurs. We collect both success rate and cost
over time and plot those results as success-cost graphs.
This case is discussed in Section 8.3. Note that each
case uses a different hardware setup as mentioned in
Section 8.

Figure 6. Four scenarios for low-dimensional planning. Start configuration of robot (green) is shown alongside goal configuration (red)
when applicable. In each figure, the robot is shown on the original space (left), and with the first projection applied (right), where the
original robot is shown with a transparent color.

Figure 7. Hypercube scenario comparison of algorithms STRIDE
and QRRT.

Orthey et al. 19

Figure 8. Runtime benchmarks on the first four high-dimensional planning scenarios. (a) 37-dof pre-grasp, (b) Benchmark, (c) 48-dof
drones, (d) Benchmark, (e) 54-dof kraken animation, (f) Benchmark, (g) 72-dof manipulators, and (h) Benchmark.

20 The International Journal of Robotics Research 43(1)

8.2.1. 100-dof hypercube (98 levels). The hypercube
(Gipson et al., 2013) is a classical motion planning
benchmark, where we need to move a point robot in an
n-dimensional cube X = [0,1]n from xI = (0,…, 0) to xG = (1,
…, 1). We allow the robot to move only along corridors of
size ϵ = 0.1 along the edges of the cube as shown in
Figure 8(a). For more details see Gipson et al. (2013). As a
fiber bundle, we choose the sequence of reductions

½0; 1�n → ½0; 1�n�1 →…→ ½0; 1�2 (18)

where the constraint function is the constraint function of
the corresponding cube.

Prior work showed solutions to 25-dimensional cubes in
around 100s (Gipson et al., 2013). Here, we attempt to solve
a 100-dimensional cube version. The benchmarks are
shown in Figure 8(b). All bundle planners have an average
runtime of less than 0.1s. Also the non-bundle planner
SPARS2 terminates with a runtime of around 0.2s. How-
ever, we note that SPARS2 terminates with a probabilistic
infeasibility proof, that is, they declare this problem in-
feasible. Only QRRT, QMP and their star versions can solve
this problem in the time limit given. While we terminate all
planner at 60s, we can provide a rough estimate of per-
formance improvement of QRRT compared to STRIDE
(which outperforms PRM, KPIECE, EST, and RRT (Gipson
et al., 2013)). To do that, we let STRIDE run on the n = {3,
…, 9} dimensional version of the cube, then we extrapolate
the results by fitting a cubic curve (see Figure 7). Comparing
the extrapolation to QRRTat the dimension 100, we observe
that QRRT performs around six orders of magnitude better
than STRIDE.

8.2.2. 21-dof box folding (5 levels). To automate deliveries
or assemble production pieces, we often need to compute
folding motions. Here we concentrate on computing the
folding motion of a small packaging box with 21-dof
(Figure 8(c)). Such problems are challenging, because
parts of the box have to fit into small narrow passages,
which is challenging for sampling-based planners. We use a
fiber bundle sequence as

SEð2Þ×R18 → SEð2Þ×R16 → SEð2Þ×R13

→ SEð2Þ×R10 → SEð2Þ×R7

→ SEð2Þ
(19)

which corresponds to the removal of (1) flaps on lid, (2) lid, (3)
right side, (4) left side, (5) back/front elements. We show the
benchmarks in Figure 8(d). The best performing algorithm is
QMPwith 0.68s of planning time. QRRT performs worse with
around 6.4s.We discuss this performance difference in Section
9. Both QMP and QRRT together with QMP* outperform all
other planning algorithms, that is, no OMPL algorithm was
able to solve this scenario in our timelimit.

8.2.3. 24-dof Dubins cars crossing (3 levels). With several
companies pushing towards autonomous driving, we need
increasingly more efficient algorithms to coordinate

multiple car-like robots under nonholonomic constraints.
We concentrate here on the problem of planning motions for
eight Dubins cars (Dubins, 1957), which are cars with
constant forward speed, which we can steer left or right. The
cars start on different ends of a crossroad (in reverse di-
rection) and we need them to cross the road while avoiding
each other (Figure 8(e)). We impose a fiber bundle as

SEð2Þ8 → �
R

2
�8
→

�
R

2
�4

(20)

which corresponds to the reduction onto a disk inscribed in the
car and the removal of the upper four robots, respectively. We
show the benchmark in Figure 8(f). QRRT performs best with
a planning time of 0.28s closely followed by QRRT* (0.29s)
and QMP (1.77s). QMP* performs less well with 12.41s of
planning time. Except ESTwith planning time of around 54s,
there was no non-bundle algorithm able to solve this coor-
dination problem in the timelimit given.

8.2.4. 30-dof airport (15 levels). While coordinating mo-
tions for multiple cars are essential for traffic coordination,
we often need to coordinate multiple vehicles in 3D under
nonholonomic constraints. One particular instance of this
problem is an airport, in which we might need to coordinate
cars, planes, and zeppelins, each with different state spaces
and different possible nonholonomic constraints. Here, we
use a scenario with three trucks, 1 zeppelin, 1 propeller
plane, 1 airplane while taxiing4 and two airplanes while
flying (see Figure 8(g)). This scenario is particularly
challenging, since all vehicles have nonholonomic con-
straints except the zeppelin. We model the dynamics of the
trucks and the planes as Dubins car and Dubins airplane
(LaValle, 2006), respectively. Note that arbitrary dynami-
cally constraints could be imposed, but there are im-
plementations of Dubins car and airplane spaces available in
OMPL, which makes them also useable with other algo-
rithms in the library. We use a prioritization-like abstraction
as

SEð2Þ4 × SEð3Þ× �R3 × SOð2Þ�3 →
R

2 × SEð2Þ3 × SEð3Þ× �R3 × SOð2Þ�3 →
SEð2Þ3 × SEð3Þ× �R3 × SOð2Þ�3 →
R

2 × SEð2Þ2 × SEð3Þ× �R3 × SOð2Þ�3 →
SEð2Þ2 × SEð3Þ× �R3 × SOð2Þ�3 →
R

2 × SEð2Þ× SEð3Þ× �R3 × SOð2Þ�3 →
SEð2Þ× SEð3Þ× �R3 × SOð2Þ�3 →
R

2 × SEð3Þ× �R3 × SOð2Þ�3 →
SEð3Þ× �R3 × SOð2Þ�3 →�
R

3 × SOð2Þ�3 →
R

3 ×
�
R

3 × SOð2Þ�2 →�
R

3 × SOð2Þ�2 →
R

3 ×
�
R

3 × SOð2Þ�→�
R

3 × SOð2Þ�→
R

3

(21)

Orthey et al. 21

where the first four SE(2) spaces represent the three trucks
and the taxiing airplane. The SE(3) space represents the
zeppelin and the remaining three spaces of R

3 × SOð2Þ
represent the two flying airplanes and the propeller plane,
respectively. Each projection either projects an SE(2) space
by using the simpler robots of a nested disk, by removing a
robot completely (and its geometry) or by nesting an in-
scribed sphere. The benchmarks are shown in Figure 8(h).
The best performing planner are QRRT (0.52s), QMP
(0.99s) and QMP* (0.94s). QRRT* performs significantly
worse with a planning time of around 58s, which suggest
that it could not completely solve this problem in the time
allocated. Besides the bundle planner, we also observe that
RRTConnect shows competitive results with 4.5s of
planning time.

8.2.5. 37-dof pregrasp (3 levels). Manipulation of objects is
a challenging task for robots (Dafle et al., 2018; Driess et al.,
2020), in particular if we have to deal with realistic hands
with many dofs. We concentrate here on computing a
pregrasp for a 37-dof shadow-hand robot mounted on a
KUKA LWR robot. We define the problem as finding
a pregrasp for the grasping of a small glass, as we depict in
Figure 9(a).We impose a fiber bundle as

R
31 →R

18 →R
13 (22)

which corresponds to a reduction by first removing all
fingers except thumb and index finger and second re-
moving the thumb. The benchmark for this problem is
shown in Figure 9(b). Both QMP and QMP* perform best
with around 6.81s and 12.36s of planning time. In this
scenario, no non-bundle planner can solve this problem.
Please note that the planner QRRT and QRRT* perform
around 44s and 48s. We discuss this performance further in
Section 9.

8.2.6. 48-dof drones (8 levels). Planning motions for
multiple quadrotors (Hönig et al., 2018) is essential for
drone delivery, in disaster response scenarios and for en-
tertainment purposes. We consider here the problem of
coordinating the motion of eight drones which have to
traverse a small forest-like environment as shown in Figure
9(c). We use the fiber bundle

SEð3Þ8 → SEð3Þ7 →/→ SEð3Þ (23)

which corresponds to a prioritization of the drones, that is, in
each projection we remove one robot. The benchmarks are
shown in Figure 9(d). While the best algorithm is QRRT
(0.14s) closely followed by QMP (0.15s) and QMP*
(0.16s), we observe that also RRTConnect and BFMT show
competitive performances with 0.59s and 6.05s,
respectively.

8.2.7. 54-dof Kraken animation (17 levels). Computer
animation is an important application of planning

algorithms (Plaku et al., 2018). In animations for movies, an
animator would probably insert keyframes to guide the
planning of motions. However, if we like to compute an-
imations online, for example, for a computer game, we
require fast planning algorithms.

We show here the problem of animating a 54-dof
Kraken-like robot (see Figure 9(e)), which has to wrap
its arms around a sailing ship. We use a fiber bundle re-
duction as

SEð3Þ×R48 → SEð3Þ ×R45 → SEð3Þ×R42

→…→
SEð3Þ×R6 → SEð3Þ ×R3 → SEð3Þ

(24)

which corresponds to the removal of each arm (6-dof
revolute joints) on each stage, whereby we first remove the
last three links (removal of 3-dof) and then remove the
remaining arm (3-dof). We show the benchmark in Figure
9(f). We observe that both QRRT (0.20 s) and QMP (0.23 s)
perform below 1s to find a feasible solution. Next comes
QMP* with a planning time of 6.21 s. The next best non-
bundle planner is BiTRRT with a performance of around
22 s planning time. The performance of the bundle planner
QRRT is thus two orders of magnitude better than the next
best non-bundle planner.

8.2.8. 72-dof manipulators (3 levels). When automating
construction work (Hartmann et al., 2020) or warehouse
operations (Salzman and Stern, 2020; Eppner et al., 2016),
we often need to coordinate multiple robots with many dofs.
Here, we consider the coordination of eight KUKA ma-
nipulators on disk-shaped mobile bases. Each manipulator
starts around a circle and needs to change position with its
antipodal partner (see Figure 9(g)). We impose a fiber
bundle as

�
SEð2Þ×R6

�8
→

�
R

2
�8
→

�
R

2
�4

(25)

which corresponds to the removal of arms and the removal
of the upper half of the robots. The benchmarks are shown in
Figure 9(h). We observe that QRRT solves this problem in
3.65 s while QRRT* requires 19 s. Only one non-bundle
planner is able to terminate on average before the timelimit:
RRTConnect with around 39 s seconds of planning time.
Note that this problem is difficult for QMP (57 s) and QMP*
(50 s) which perform worse than RRTConnect.

8.3. Cost analysis of high-dimensional scenarios

So far, planners have been evaluated with respect to run-
time. To also evaluate the cost convergence property, we
compare both QRRT* and QMP* on all eight high-
dimensional scenarios to QMP, QRRT, BIT*, RRT*,
LBTRRT, and RRTConnect. The results are shown in
Figure 10.

22 The International Journal of Robotics Research 43(1)

Figure 9. Runtime benchmarks on the last four high-dimensional planning scenarios.

Orthey et al. 23

Let us detail the performance of each algorithm class.
First, the non-bundle space planners are only able to tackle
two out of eight scenarios. RRTConnect is able to solve the
airport and the drones scenario by quickly converging to
100% success rate. In the drones scenario, RRTConnect also

finds good, low-cost solutions before any other planner has
even found a single solution. However, apart from
RRTConnect, the planners RRT*, BIT*, and LBTRRT are
not applicable to any of the scenarios with no solved run
during the time budget.

Figure 10. Success-cost plots of the eight high-dimensional planning scenarios.

24 The International Journal of Robotics Research 43(1)

Second, the bundle space planners QMP, QMP*, QRRT,
and QRRT* are able to tackle all eight scenarios. For the
hypercube, QMP, QRRT, and QRRT* quickly find a so-
lution, but are not able to improve upon it. QMP* finds a
solution slightly later, but is able to continuously improve
upon it. In the box folding task, QMP* is able to solve 90%
of the cases while converging quickly to a low-cost solution.
Both QRRT and QMP have lower success rates, but find on
average a low-cost solution. QRRT*, however, is not able to
adequately solve this problem with a success rate of 10%.
For the crossing cars scenario, all bundle planners reach
100% success rate with both QRRT*and QMP* converging
to low-cost solutions over time. For the airport scenario,
QRRT and QMP reach 100% success rate, while both
QRRT* and QMP* reach only 80% and 30%, respectively.
In terms of cost convergence, QMP* is not able to improve
the initial solution cost and has a large cost variance as
indicated by the large shaded region around the
average cost.

In the Shadow-hand scenario, QMP, and QMP* reach
90% and 70% success rate, while QRRT, and QRRT* reach
only 40% and 20%. While QMP* is able to improve the
solutions slightly, it has a large variance around the average
cost. For the drones scenarios, both QMP and QMP* reach
100% with QMP* converging over time to good low-cost
solutions. QRRT is competitive with 90% success rate and
low-cost average solution as indicated by the cross in the
cost plot. However, QRRT* is only able to solve 10% of
the runs. For the octopus scenario, QMP, QMP*, and
QRRT reach 100% success rate, while QRRT* only rea-
ches 20%. QMP* shows quick, and low-variance con-
vergence to an optimal solution. Finally, in the mobile
manipulators scenario, QRRT* and QRRT reach 90%
success rate, while QMP* reaches 20% and QMP fails to
find any solutions. QRRT* is also able to converge quickly
over time, reaching a solution cost significantly below
solution costs from QRRT, and RRTConnect.

9. Discussion

From the preceding evaluation section, we have supporting
evidence to draw three broad conclusions. First, it is difficult
to solve high-dimensional planning problems with classical
(non-bundle) motion planning algorithms. This should not
be surprising, since the problem is known to be NP-hard
(Hopcroft et al., 1984; Canny, 1988; Solovey, 2020) and the
spaces to contain multiple narrow passages (Lozano-Pérez
and Wesley, 1979; Salzman et al., 2013).

Second, we can often quickly and reliably solve high-
dimensional planning problems by exploiting fiber bundles.
We believe there are three primary contributing factors.
First, we have expansions of narrow passages. If we project
a narrow passage onto a base space, we often observe the
narrow passage to increase its volume relative to the sur-
rounding space. We thereby increase our chance to sample
narrow passages on the base space, which we can use to
guide sampling on the total space (Orthey and Toussaint,

2019). Second, we have the removal of infeasible pre-
images. If we find a point on the base space to be infeasible,
we can remove their preimage from the bundle space,
thereby removing regions which cannot be feasible (Orthey
et al., 2018). Third, we have dedicated methods to exploit
admissible heuristics. If we have a path on the base space,
we can often quickly find solutions using the recursive path
section method or by using path restriction sampling (Zhang
et al., 2009). By staying on the path restriction, we exploit
the information from the base space, similar to how we
would exploit an admissible cost-to-go heuristic in a dis-
crete search scenario (Pearl, 1984; Aine et al., 2016).

Third, the cost analysis showed that bundle space
planners can successfully converge to low-cost solutions in
high-dimensional spaces. However, this seems to only hold
true for QMP*, which outperforms QRRT* in terms of cost
convergence in seven out of eight scenarios, as shown in
Section 8.3. QRRT*, however, has inferior performance
compared to QMP* and only outperforms QMP* in the
mobile manipulators scenario. We believe this is due to
QRRT* using tree rewiring, which is an expensive opera-
tion. Instead, QMP* does not rely on such an operation and
is better suited to tackle high-dimensional spaces.

While our evaluation seems to corroborate those state-
ments, we also like to discuss two limiting issues. The first
issue are evaluation outlier, which seemingly contradict our
statements. We discuss what they are and what we can do
about them. The second issue is our reliance on pre-
specification of fiber bundles, which we do for this work
manually. We discuss options to automatically specify them
in the future.

9.1. Evaluation outlier

From the evaluations, we observe that we often can find
solutions over multilevel abstractions quickly and reliably.
However, we observe three noteworthy exceptions. First,
we observe that QRRT performs below 3s on every en-
viroment, except the 37-dof pregrasp (43s) and the box
folding task (8s). The cost analysis further shows that QRRT
is often not able to reach the 100% success rate. We believe
those environments to be challenging for QRRT, because
they are examples of ingress problems, that is, problems
where we need to enter a narrow passage, similar to a
Bugtrap (Yershova et al., 2005). Such problems could be
overcome in future work by developing a bidirectional
version of QRRT, by using biased sampling towards narrow
passages (Yang and Lavalle, 2004), or by selectively ex-
panding states at the frontier of the tree (Yershova et al.,
2005; Denny et al., 2020).

Second, we observe QRRT* to perform worse by an
order of magnitude compared to QRRT on five out of eight
environments. The cost analysis corroborate this observa-
tion by showing that QRRT* performs worse in cost
convergence on seven out of eight environments when
compared against QMP*.We believe the rewiring of the tree
in Alg. 6 slows down planning over multilevel abstractions.

Orthey et al. 25

In the future, we could overcome this by either postpone
rewiring of the tree until a solution is found or by exploiting
informed sets (Gammell et al., 2014), which are admissible
lower bounds on the optimal solution. It could also be
fruitful to investigate the connection between quotient space
metrics and the geometric shape of informed sets, which we
could use as admissible heuristics (Gammell et al., 2020).

Third, we observe that the non-bundle planner
RRTConnect performs competitively on the 30-dof airport
and the 48-dof drones environment. Also BFMT performs
competitively on 48-dof drones. It seems, we could solve
both problems without using fiber bundles. We believe this
to happen because both scenarios involve SE(3) state
spaces, where narrow passages might be rarer than in SE(2)
scenarios. In those environments, we therefore have enough
volume to quickly find valid samples, which we can exploit
using RRTConnect, or BFMT. However, we believe fiber
bundles are still needed. First, we do not know if
RRTConnect or BFMT would still perform well if we
further increase dimensionality. Second, only by using
bundle planners can we consistently and reliably find so-
lutions in all environments. Third, fiber bundles are often
the only option if we want to rapidly establish infeasibility
or organize local minima over high-dimensional state
spaces (Orthey et al., 2020). It is, however, necessary to
investigate how narrow passages slow down planning and
how we could overcome them using fiber bundles. We
previously conducted some evaluations in that direction for
the QRRT planner (Orthey and Toussaint, 2019).

9.2. Specifying fiber bundles

For each problem, fiber bundles have to be specified
manually. This is problematic, since there is no clear
guideline on how to select fiber bundles for a specific
problem. This could be overcome by optimizing over a
primitive set of fiber bundles. To create a primitive set of
fiber bundles, we could use the largest inscribed sphere for a
rigid body, the removal of links from a chain, or the removal
of nonholonomic constraints from a dynamical system. We
can then search the landscape of such primitive fiber
bundles to find an efficient fiber bundle for a specific robot
and a specific set of environments. A recent study by
Brandao and Havoutis (2020) shows promising results in
that direction by using evolutionary algorithms to select an
abstraction. It could also be promising to use workspace
information to select a fiber bundle (Yoshida, 2005), either
by choosing joints which can actuate links of interest
through the workspace (Luna et al., 2020) or by choosing a
bundle on-the-fly based on which links are closest to ob-
stacles (Kim et al., 2015). We thereby could choose different
fiber bundles for large rooms, for narrow passages or for
ingress tasks. However, in those cases, we would need to
consider fiber bundles with changing dimensions, which are
in general given by the concept of a sheaf (Bredon, 2012).

10. Conclusion

Wemodeled multilevel motion planning problems using the
framework of fiber bundles. To exploit fiber bundles, we
developed a set of bundle primitives, and the bundle
planners QRRT* and QMP*, which we showed to be
probabilistically complete and asymptotically optimal. We
also extended the existing bundle planners QRRT (Orthey
and Toussaint, 2019) and QMP (Orthey et al., 2018) using
an exponential importance criterion and a recursive L1 path
section method (Figure 1). We conducted a meta-analysis to
find the best implementation of the bundle primitives, in-
cluding graph sampling, metric, importance selection, and
path section methods. Using the bundle planners, we ro-
bustly and efficiently solved challenging high-dimensional
motion planning problems, from 21-dof to 100-dof. We also
showed competitive results for low-dimensional scenarios,
and we showed QMP* to be superior in cost convergence
for high-dimensional scenarios.

However, we believe there is still room for improvement.
In particular, runtime could be further reduced by devel-
oping a bidirectional version of QRRT (LaValle and Kuffner
Jr, 2001), by improving convergence using informed sets
(Gammell et al., 2014), by investigating novel path section
optimization methods (Zhang et al., 2009), and by auto-
matically searching fiber bundles to exploit (Kim et al.,
2015; Brandao and Havoutis, 2020)—that is, with respect to
a given bundle algorithm (Orthey and Toussaint, 2019). We
also believe it is worthwhile to investigate the connection to
complementary approaches, like computing neighborhoods
(Lacevic and Osmankovic, 2020) and exploiting sufficiency
conditions (Grey et al., 2017).

However, despite room for improvements, we showed
that bundle planners can efficiently exploit fiber bundles. By
exploiting fiber bundles, bundle planners outperformed
existing planners often by up to two orders of magnitude,
occasionally up to six orders of magnitude. Thus, we believe
to not only have contributed to solving multilevel planning
problems in the now, but also to have contributed tools and
insights to investigate high-dimensional state spaces in the
future.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: The
authors disclose receipt of the following financial support for the
research, authorship and publication of this article: This work was
supported by the Alexander von Humboldt Foundation [individual
grant], the Japan Society for the Promotion of Science [individual
grant] and the Max-Planck Society [fellowship grant].

26 The International Journal of Robotics Research 43(1)

ORCID iD

Andreas Orthey https://orcid.org/0000-0002-1478-1405

Notes

1. https://github.com/aorthey/MotionExplorer
2. https://ompl.kavrakilab.org/multiLevelPlanning.html
3. We say that two states are path-connected if there exists a

continuous path connecting them.
4. Taxiing refers to movements of an airplane on the ground, for

example after landing or before take-off.

References

Aine S, Swaminathan S, Narayanan V, et al. (2016) Multi-heuristic
a. The International Journal of Robotics Research 35(1–3):
224–243.

Amato NM, Bayazit OB, Dale LK, et al. (1998) Obprm: an
obstacle-based prm for 3d workspaces. In: Workshop on
the Algorithmic Foundations of Robotics, pp. 155–168.

Arslan O and Tsiotras P (2013) Use of relaxation methods in
sampling-based algorithms for optimal motion planning In:
IEEE International Conference on Robotics and Automation.
IEEE, pp. 2421–2428.

Baginski B (1996) Local motion planning for manipulators based
on shrinking and growing geometry models In: IEEE In-
ternational Conference on Robotics and Automation. Cite-
seer, pp. 3303–3308.

Ballard DH (2015) Brain Computation as Hierarchical Abstrac-
tion. MIT press.

Bayazit OB, Xie D and Amato NM (2005) Iterative relaxation of
constraints: a framework for improving automated motion
planning In: IEEE International Conference on Intelligent
Robots and Systems, pp. 3433–3440.

Bhattacharya S and Ghrist R (2018) Path homotopy invariants
and their application to optimal trajectory planning. Annals
of Mathematics and Artificial Intelligence 84(3–4):
139–160.

Bhattacharya S, Likhachev M and Kumar V (2012) Topological
constraints in search-based robot path planning. Autonomous
Robots 33(3).

Bialkowski J, Otte M, Karaman S, et al. (2016) Efficient collision
checking in sampling-based motion planning via safety
certificates. The International Journal of Robotics Research
35(7): 767–796.

Bobrow JE, Dubowsky S and Gibson J (1985) Time-optimal
control of robotic manipulators along specified paths. The
International Journal of Robotics Research 4(3): 3–17.

Bohlin R and Kavraki LE (2000) Path planning using lazy prm.
IEEE International Conference on Robotics and Automation
1: 521–528.

Boor V, Overmars MH and Van Der Stappen AF (1999) The
Gaussian sampling strategy for probabilistic roadmap plan-
ners. IEEE International Conference on Robotics and Au-
tomation 2: 1018–1023.

Boyd S and Vandenberghe L (2004) Convex Optimization.
Cambridge University Press.

Brandao M and Havoutis I (2020) Learning sequences of approxi-
mations for hierarchical motion planning. International Con-
ference on Automated Planning and Scheduling 30: 508–516.

Branicky MS, LaValle SM, Olson K, et al. (2001) Quasi-
randomized path planning. IEEE International Conference
on Robotics and Automation 2, pp. 1481–1487.

Bredon GE (2012) Sheaf Theory. Springer Science and Business
Media, volume 170.

Bretl T (2006) Motion planning of multi-limbed robots subject to
equilibrium constraints: the free-climbing robot problem. The
International Journal of Robotics Research 25(4): 317–342.

Bungartz HJ and Griebel M (2004) Sparse grids. Acta Numerica
13: 147–269.

Burns B and Brock O (2005) Toward optimal configuration space
sampling Robotics: Science and Systems. Cambridge, USA,
pp. 105–112.

Canny JF (1988) The Complexity of Robot Motion Planning. MIT
press.

Cortés J, Jaillet L and Siméon T (2008) Disassembly path planning
for complex articulated objects. Transactions on Robotics
24(2): 475–481.

Dafle NC, Holladay R and Rodriguez A (2018) In-hand manip-
ulation via motion cones Robotics: Science and Systems.
Pittsburgh: Pennsylvania, pp. 19–31.

Deits R and Tedrake R (2014) Footstep planning on uneven terrain
with mixed-integer convex optimization IEEE International
Conference on Humanoid Robots. IEEE, pp. 279–286.

Denny J, Sandström R, Bregger A, et al. (2020) Dynamic region-
biased rapidly-exploring random trees Algorithmic Founda-
tions of Robotics XII. Springer, pp. 640–655.

Dobson A and Bekris KE (2014) Sparse roadmap spanners for
asymptotically near-optimal motion planning. The Interna-
tional Journal of Robotics Research 33(1): 18–47.

Driess D, Ha JS and Toussaint M (2020) Deep visual reasoning:
learning to predict action sequences for task and motion
planning from an initial scene image Robotics: Science and
Systems.

Dubins LE (1957) On curves of minimal length with a constraint
on average curvature, and with prescribed initial and terminal
positions and tangents. American Journal of mathematics
79(3): 497–516.

Edelkamp S and Schroedl S (2011) Heuristic Search: Theory and
Applications. Elsevier.

Eppner C, Höfer S, Jonschkowski R, et al. (2016) Lessons from
the amazon picking challenge: four aspects of building
robotic systems Robotics: Science and Systems. Michigan:
AnnArbor.

Erdmann M and Lozano-Perez T (1987) On multiple moving
objects. Algorithmica 2(1-4): 477.

Farber M (2008) Invitation to Topological Robotics. European
Mathematical Society, volume 8.

Farber M (2017) Configuration spaces and robot motion planning
algorithms. Combinatorial And Toric Homotopy: Introduc-
tory Lectures 35: 263.

Ferbach P and Barraquand J (1997) A method of progressive
constraints for manipulation planning. Transactions on Ro-
botics 13(4): 473–485.

Orthey et al. 27

https://orcid.org/0000-0002-1478-1405
https://orcid.org/0000-0002-1478-1405
https://github.com/aorthey/MotionExplorer
https://ompl.kavrakilab.org/multiLevelPlanning.html

Gammell JD, Srinivasa SS and Barfoot TD (2014) Informed
RRT*: optimal sampling-based path planning focused via
direct sampling of an admissible ellipsoidal heuristic IEEE
International Conference on Intelligent Robots and Systems.
IEEE, pp. 2997–3004.

Gammell JD, Barfoot TD and Srinivasa SS (2018) Informed
sampling for asymptotically optimal path planning. Trans-
actions on Robotics 34(4): 966–984.

Gammell JD, Barfoot TD and Srinivasa SS (2020) Batch informed
trees (bit*): informed asymptotically optimal anytime search.
The International Journal of Robotics Research 39(5):
543–567.

Giles MB (2015) Multilevel Monte Carlo methods. Acta Numerica
24: 259–328.

Gipson B, Moll M and Kavraki LE (2013) Resolution independent
density estimation for motion planning in high-dimensional
spaces IEEE International Conference on Robotics and
Automation. IEEE, pp. 2437–2443.

Gochev K, Safonova A and Likhachev M (2012) Planning with
adaptive dimensionality for mobile manipulation IEEE In-
ternational Conference on Robotics and Automation,
pp. 2944–2951.

Gochev K, Safonova A and Likhachev M (2013) Incremental
planning with adaptive dimensionality International Con-
ference on Automated Planning and Scheduling.

Grey MX, Ames AD and Liu CK (2017) Footstep and motion
planning in semi-unstructured environments using random-
ized possibility graphs IEEE International Conference on
Robotics and Automation, pp. 4747–4753.

Guo X, Srivastava A and Sarkar S (2019) A Quotient Space
Formulation for Statistical Analysis of Graphical Data. arXiv
e-prints.

Ha JS, Park SS and Choi HL (2019) Topology-guided path integral
approach for stochastic optimal control in cluttered envi-
ronment. Robotics and Autonomous Systems 113: 81–93.

Hart PE, Nilsson NJ and Raphael B (1968) A formal basis for the
heuristic determination of minimum cost paths. IEEE
Transactions on Systems Science and Cybernetics 4(2):
100–107.

Hartmann VN, Oguz OS, Driess D, et al. (2020) Robust task and
motion planning for long-horizon architectural construction
planning. IEEE International Conference on Intelligent Ro-
bots and Systems.

Hastie T, Tibshirani R and Friedman J (2009) The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer Science & Business Media.

Hauser K (2015) Lazy collision checking in asymptotically-
optimal motion planning In: IEEE International Confer-
ence on Robotics and Automation. IEEE, pp. 2951–2957.

Henkel C and Toussaint M (2020) Optimized directed roadmap
graph for multi-agent path finding using stochastic gradient
descent The 35th ACM/SIGAPP Symposium on Applied
Computing (SAC ’20). Brno: Czech Republic.

Hönig W, Preiss JA, Kumar TS, et al. (2018) Trajectory planning
for quadrotor swarms. Transactions on Robotics 34(4):
856–869.

Hopcroft JE, Schwartz JT and Sharir M (1984) On the complexity
of motion planning for multiple independent objects; pspace-
hardness of the” warehouseman’s problem. The International
Journal of Robotics Research 3(4): 76–88.

Hsu D, Latombe JC and Motwani R (1999) Path planning in
expansive configuration spaces. International Journal
of Computational Geometry and Applications 9(4–5):
495–512.

Hsu D, Jiang T, Reif J, et al. (2003) The bridge test for sampling
narrow passages with probabilistic roadmap planners. IEEE
International Conference on Robotics and Automation 3:
4420–4426.

Hsu D, Sánchez-Ante G, Cheng H, et al. (2006) Multi-level free-
space dilation for sampling narrow passages in prm planning
IEEE International Conference on Robotics and Automation.
IEEE, pp. 1255–1260.

Husemoller D (1966) Fibre Bundles. Springer, volume 5.

Ichter B and Pavone M (2019) Robot motion planning in
learned latent spaces. Robotics and Automation Letters
4(3): 2407–2414.

Ivan V, Zarubin D, Toussaint M, et al. (2013) Topology-based
representations for motion planning and generalization in
dynamic environments with interactions. The International
Journal of Robotics Research 32(9–10): 1151–1163.

Jaillet L and Porta JM (2013) Path planning under kinematic
constraints by rapidly exploring manifolds. Transactions on
Robotics 29(1): 105–117.

Jaillet L and Siméon T (2008) Path deformation roadmaps:
compact graphs with useful cycles for motion planning. The
International Journal of Robotics Research 27(11–12):
1175–1188.

Jaillet L, Cortés J and Siméon T (2010) Sampling-based path
planning on configuration-space costmaps. Transactions on
Robotics 26(4): 635–646.

Janson L, Schmerling E, Clark A, et al. (2015) Fast marching tree:
a fast marching sampling-based method for optimal motion
planning in many dimensions. The International Journal of
Robotics Research 34(7): 883–921.

Janson L, Ichter B and Pavone M (2018) Deterministic sampling-
based motion planning: optimality, complexity, and perfor-
mance. The International Journal of Robotics Research
37(1): 46–61.

Karaman S and Frazzoli E (2011) Sampling-based algorithms for
optimal motion planning. The International Journal of Ro-
botics Research 30(7): 846–894.

Kavraki LE, Svestka P, Latombe JC, et al. (1996) Probabilistic
roadmaps for path planning in high-dimensional configura-
tion spaces. Transactions on Robotics 12(4): 566–580.

Kim DH, Choi YS, Park T, et al. (2015) Efficient path planning for
high-dof articulated robots with adaptive dimensionality
IEEE International Conference on Robotics and Automation.
IEEE, pp. 2355–2360.

Kingston Z, Moll M and Kavraki LE (2019) Exploring implicit
spaces for constrained sampling-based planning. The In-
ternational Journal of Robotics Research 38(10–11):
1151–1178.

28 The International Journal of Robotics Research 43(1)

Kleinbort M, Solovey K, Littlefield Z, et al. (2019) Probabilistic
completeness of rrt for geometric and kinodynamic planning
with forward propagation. Robotics and Automation Letters
4(2): 277–283.

Konidaris G (2019) On the necessity of abstraction. Current
opinion in behavioral sciences 29: 1–7.

Kuffner JJ and LaValle SM (2000) RRT-connect: an efficient
approach to single-query path planning. IEEE Interna-
tional Conference on Robotics and Automation 2:
995–1001.

Kuffner JJ and LaValle SM (2011) Space-filling trees: a new
perspective on incremental search for motion planning IEEE
International Conference on Intelligent Robots and Systems.
IEEE, pp. 2199–2206.

Lacevic B and Osmankovic D (2020) Improved c-space explo-
ration and path planning for robotic manipulators using
distance information IEEE International Conference on
Robotics and Automation.

Lacevic B, Osmankovic D and Ademovic A (2016) Burs of free
c-space: a novel structure for path planning IEEE Inter-
national Conference on Robotics and Automation,
pp. 70–76.

Ladd AM and Kavraki LE (2004) Fast tree-based exploration of
state space for robots with dynamics Algorithmic Founda-
tions of Robotics VI. Springer.

Lavalle SM (1998) Rapidly-exploring Random Trees: A New Tool
for Path Planning. Iowa State University. Technical report.

LaValle SM (2006) Planning Algorithms. Cambridge University
Press.

LaValle SM and Kuffner JJ Jr (2001) Randomized kinodynamic
planning. The International Journal of Robotics Research
20(5): 378–400.

Lee JM (2003) Introduction to Smooth Manifolds. New York, NY:
Springer.

Leskovec J and Faloutsos C (2006) Sampling from large graphs
Proceedings of the 12th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining. ACM,
pp. 631–636.

Li Y, Littlefield Z and Bekris KE (2016) Asymptotically optimal
sampling-based kinodynamic planning. The International
Journal of Robotics Research.

Lozano-Pérez T (1983) Spatial planning: a configuration space
approach. IEEE Trans. Computers 32(2): 108–120.

Lozano-Pérez T andWesley MA (1979) An algorithm for planning
collision-free paths among polyhedral obstacles. Communi-
cations of the ACM 22(10): 560–570.

Luna R, Moll M, Badger J, et al. (2020) A scalable motion planner
for high-dimensional kinematic systems. The International
Journal of Robotics Research 39(4): 361–388.

Ma H, Harabor D, Stuckey PJ, et al. (2019) Searching with
consistent prioritization for multi-agent path finding. AAAI
Conference on Artificial Intelligence 33: 7643–7650.

Mandalika A, Choudhury S, Salzman O, et al. (2019) Generalized
lazy search for robot motion planning: interleaving search and
edge evaluation via event-based toggles. International
Conference on Automated Planning and Scheduling 29:
745–753.

Mavrogiannis CI and Knepper RA (2016) Decentralized multi-
agent navigation planning with braids. In: Workshop on the
Algorithmic Foundations of Robotics.

Möbius AF (1858). Werke 2: 519.

Moll M, Şucan IA and Kavraki LE (2015) Benchmarking motion
planning algorithms: an extensible infrastructure for analysis
and visualization. Robotics and Automation Magazine 22(3):
96–102.

Munkres J (2000) Topology. Pearson.

Nguyen MK, Jaillet L and Redon S (2018) Art-rrt: as-rigid-as-
possible exploration of ligand unbinding pathways. Journal
of Computational Chemistry 39(11): 665–678.

Orthey A and Toussaint M (2019) Rapidly-Exploring Quotient-Space
Trees: Motion Planning Using Sequential Simplifications. In-
ternational Symposium of Robotics Research.

Orthey A and Toussaint M (2020) Visualizing local minima in multi-
robot motion planning using multilevel morse theory.Workshop
on the Algorithmic Foundations of Robotics.

Orthey A, Escande A and Yoshida E (2018) Quotient-space motion
planning IEEE International Conference on Intelligent Ro-
bots and Systems, pp. 8089–8096.

Orthey A, Frész B and Toussaint M (2020) Motion planning
explorer: visualizing local minima using a local-minima tree.
Robotics and Automation Letters 5(2): 346–353.

Otte M and Frazzoli E (2016) Rrtx: asymptotically optimal single-
query sampling-based motion planning with quick replanning.
The International Journal of Robotics Research 35(7): 797–822.

Palmieri L, Koenig S and Arras KO (2016) Rrt-based non-
holonomic motion planning using any-angle path biasing
IEEE International Conference on Robotics and Automation.
IEEE, pp. 2775–2781.

Palmieri L, Bruns L, Meurer M, et al. (2019) Dispertio: optimal
sampling for safe deterministic motion planning. Robotics
and Automation Letters 5(2): 362–368.

Pappas GJ, Lafferriere G and Sastry S (2000) Hierarchically
consistent control systems. IEEE Transactions on Automatic
Control 45(6): 1144–1160.

Passino KM and Antsaklis PJ (1994) A metric space approach to
the specification of the heuristic function for the a* algorithm.
IEEE transactions on systems, man, and cybernetics 24(1):
159–166.

Pearl J (1984) Heuristics: Intelligent Search Strategies for
Computer Problem Solving. Addision Wesley.

Persson SM and Sharf I (2014) Sampling-based a* algorithm for
robot path-planning. The International Journal of Robotics
Research 33(13): 1683–1708.

Pham H and Pham QC (2018) A new approach to time-optimal
path parameterization based on reachability analysis.
Transactions on Robotics 34(3): 645–659.

Pham QC, Caron S, Lertkultanon P, et al. (2017) Admissible
velocity propagation: beyond quasi-static path planning for
high-dimensional robots. The International Journal of Ro-
botics Research 36(1): 44–67.

Plaku E (2015) Region-guided and sampling-based tree search for
motion planning with dynamics. IEEE Transactions on Ro-
botics 31(3): 723–735.

Orthey et al. 29

Plaku E, Kavraki LE and Vardi MY (2010) Motion planning with
dynamics by a synergistic combination of layers of planning.
Transactions on Robotics 26(3): 469–482.

Plaku E, Rashidian S and Edelkamp S (2018) Multi-group motion
planning in virtual environments. Computer Animation and
Virtual Worlds 29(6).

Pokorny FT, Hawasly M and Ramamoorthy S (2016a) Topo-
logical trajectory classification with filtrations of simplicial
complexes and persistent homology. The International
Journal of Robotics Research 35(1–3): 204–223.

Pokorny FT, Kragic D, Kavraki LE, et al. (2016b) High-
dimensional winding-augmented motion planning with 2d
topological task projections and persistent homology IEEE
International Conference on Robotics and Automation,
pp. 24–31.

Quinlan S (1994) PhD thesis Real-time Modification of Colli-
sion-free Paths. Stanford University Stanford.

Reid W, Fitch R, Göktoğan AH, et al. (2019) Sampling-based
hierarchical motion planning for a reconfigurable wheel-on-
leg planetary analogue exploration rover. Journal of Field
Robotics 37: 5.

Reid W, Fitch R, Göktogan AH, et al. (2020) Motion planning for
reconfigurable mobile robots using hierarchical fast marching
trees Algorithmic Foundations of Robotics XII. Springer,
pp. 656–671.

Richter C, Bry A and Roy N (2016) Polynomial trajectory planning
for aggressive quadrotor flight in dense indoor environments
Robotics Research. Springer, pp. 649–666.

Rickert M, Sieverling A and Brock O (2014) Balancing explo-
ration and exploitation in sampling-based motion planning.
Transactions on Robotics 30(6): 1305–1317.

Röwekämper J, Tipaldi GD and Burgard W (2013) Learning to
guide random tree planners in high dimensional spaces IEEE
International Conference on Intelligent Robots and Systems.
IEEE, pp. 1752–1757.

Roubı́ček T (2011) Relaxation in optimization theory and varia-
tional calculus. Walter de Gruyter, volume 4.

Russell S and Norvig P (2002) Artificial Intelligence: A Modern
Approach.

Sánchez G and Latombe JC (2003a) A single-query bi-directional
probabilistic roadmap planner with lazy collision checking
Robotics Research: The Tenth International Symposium.
Springer, pp. 403–417.

Sánchez G and Latombe JC (2003b) A single-query bi-directional
probabilistic roadmap planner with lazy collision checking
Robotics Research. Springer, pp. 403–417.

Saha M, Latombe JC, Chang YC, et al. (2005) Finding narrow
passages with probabilistic roadmaps: the small-step retrac-
tion method. Autonomous Robots 19(3): 301–319.

Salzman O (2019) Sampling-based robot motion planning.
Communications of the ACM 62(10): 54–63.

Salzman O and Halperin D (2016) Asymptotically near-optimal rrt
for fast, high-quality motion planning. Transactions on Ro-
botics 32(3): 473–483.

Salzman O and Stern R (2020) Research challenges and oppor-
tunities in multi-agent path finding and multi-agent pickup
and delivery problems. In: Proceedings of the 19th

International Conference on Autonomous Agents and Mul-
tiAgent Systems, pp. 1711–1715.

Salzman O, Hemmer M and Halperin D (2013) On the power of
manifold samples in exploring configuration spaces and the
dimensionality of narrow passages. In: E Frazzoli, T Lozano-
Perez, N Roy, et al. (eds), Algorithmic Foundations of Robotics
X. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 313–329.

Schwartz JT and Sharir M (1983) On the “piano movers” problem.
ii. general techniques for computing topological properties of
real algebraic manifolds. Advances in applied Mathematics
4(3): 298–351.

Sekhavat S, Svestka P, Laumond JP, et al. (1998) Multilevel path
planning for nonholonomic robots using semiholonomic
subsystems. The International Journal of Robotics Research
17(8): 840–857.

Selig JM (2004) Geometric Fundamentals of Robotics. Springer
Science and Business Media.

Shome R, Solovey K, Dobson A, et al. (2020) drrt*: scalable and
informed asymptotically-optimal multi-robot motion plan-
ning. Autonomous Robots 44(3): 443–467.

Siméon T, Laumond JP and Nissoux C (2000) Visibility-based
probabilistic roadmaps for motion planning. Advanced Ro-
botics 14(6): 477–493.

Siméon T, Leroy S and Laumond JP (2002) Path coordination for
multiple mobile robots: a resolution-complete algorithm.
IEEE Transactions on Robotics and Automation 18(1):
42–49.

Simon HA (1969) The Sciences of the Artificial. MIT press.
Solovey K (2020) Complexity of Planning. arXiv preprint arXiv:

2003.03632.
Solovey K and Halperin D (2014) k-color multi-robot motion

planning. The International Journal of Robotics Research
33(1): 82–97.

Solovey K and Kleinbort M (2020) The critical radius in sampling-
based motion planning. The International Journal of Robotics
Research 39(2–3): 266–285.

Solovey K, Salzman O and Halperin D (2016) Finding a needle
in an exponential haystack: discrete RRT for exploration
of implicit roadmaps in multi-robot motion planning.
The International Journal of Robotics Research 35(5):
501–513.

Steenrod NE (1951) The Topology of Fibre Bundles.
Strub MP and Gammell JD (2020) Advanced bit*(abit*): sampling-

based planning with advanced graph-search techniques IEEE
International Conference on Robotics and Automation.

Şucan IA and Kavraki LE (2009) Kinodyn amic motion planning
by interior-exterior cell exploration Algorithmic Foundation
of Robotics VIII. Springer, pp. 449–464.

Şucan IA and Kavraki LE (2011) A sampling-based tree planner
for systems with complex dynamics. Transactions on Ro-
botics 28(1): 116–131.

Şucan IA, Moll M and Kavraki L (2012) The open motion
planning library. Robotics and Automation Magazine 19(4):
72–82.

Svestka P (1996) On probabilistic completeness and expected
complexity for probabilistic path planning, volume 1996.
Utrecht University: Information and Computing Sciences.

30 The International Journal of Robotics Research 43(1)

Svestka P and Overmars MH (1998) Coordinated path planning for
multiple robots. Robotics and Autonomous Systems 23(3):
125–152.

Tonneau S, Prete AD, Pettré J, et al. (2018) An efficient acyclic
contact planner for multiped robots. Transactions on Robotics
34(3): 586–601.

Toussaint M and Lopes M (2017) Multi-bound tree search for
logic-geometric programming in cooperative manipulation
domains In: IEEE International Conference on Robotics and
Automation, pp. 4044–4051.

Toussaint M, Allen K, Smith K, et al. (2018)Differentiable Physics
and Stable Modes for Tool-Use and Manipulation Planning.
Robotics: Science and Systems.

Tu LW (2017) Differential geometry: connections, curvature, and
characteristic classes. Springer, volume 275.

Vahrenkamp N, Scheurer C, Asfour T, et al. (2008) Adaptive
motion planning for humanoid robots In: IEEE International
Conference on Intelligent Robots and Systems. IEEE,
pp. 2127–2132.

Van den Berg JP and Overmars MH (2005) Using workspace
information as a guide to non-uniform sampling in proba-
bilistic roadmap planners. The International Journal of Ro-
botics Research 24(12): 1055–1071.

Van Den Berg JP and Overmars MH (2005) Prioritized motion
planning for multiple robots In: IEEE International Con-
ference on Intelligent Robots and Systems. IEEE,
pp. 430–435.

Vega-Brown W and Roy N (2018) Admissible abstractions for
near-optimal task and motion planning In: Proceedings of the
27th International Joint Conference on Artificial Intelligence,
pp. 4852–4859.

Vidal E, Moll M, Palomeras N, et al. (2019) Online multilayered
motion planning with dynamic constraints for autonomous
underwater vehicles In: IEEE International Conference on
Robotics and Automation. IEEE, pp. 8936–8942.

Vonásek Vand Pěniĝka R (2019) Sampling-based motion planning
of 3d solid objects guided by multiple approximate solutions
In: IEEE International Conference on Intelligent Robots and
Systems. IEEE, pp. 1480–1487.

Wagner G and Choset H (2015) Subdimensional expansion for
multirobot path planning. Artificial Intelligence 219: 1–24.

Wilmarth SA, Amato NM and Stiller PF (1999) Maprm: a
probabilistic roadmap planner with sampling on the medial
axis of the free space. IEEE International Conference on
Robotics and Automation IEEE, volume 2, pp. 1024–1031.

Xanthidis MP, Esposito JM, Rekleitis I, et al. (2018) Analysis of
Motion Planning by Sampling in Subspaces of Progressively
Increasing Dimension. arXiv preprint arXiv:1802.00328.

Yang L and Lavalle SM (2004) The sampling-based neighborhood
graph: an approach to computing and executing feedback
motion strategies. Transactions on Robotics 20(3): 419–432.

Yershova A, Jaillet L, Siméon T, et al. (2005) Dynamic-domain
rrts: efficient exploration by controlling the sampling domain
In: IEEE International Conference on Robotics and Auto-
mation. IEEE, pp. 3856–3861.

Yoshida E (2005) Humanoid motion planning using multi-level
dof exploitation based on randomized method In: IEEE

International Conference on Intelligent Robots and Systems.
IEEE, pp. 3378–3383.

Yu H, Lu W and Liu D (2019) A unified closed-loop motion
planning approach for an i-auv in cluttered environment with
localization uncertainty In: IEEE International Conference on
Robotics and Automation. IEEE, pp. 4646–4652.

Yu H, Lu W, Han Y, et al. (2020) Heterogeneous dimensionality
reduction for efficient motion planning in high-dimensional
spaces. IEEE Access 8: 42619–42632.

Zarubin D, Ivan V, Toussaint M, et al. (2012) Hierarchical Motion
Planning in Topological Representations. Robotics: Science
and Systems.

Zhang L, Pan J and Manocha D (2009) Motion planning
of human-like robots using constrained coordination
IEEE International Conference on Humanoid Robots,
pp. 188–195.

Zucker M, Kuffner J and Bagnell JA (2008) Adaptive work-
space biasing for sampling-based planners In: IEEE In-
ternational Conference on Robotics and Automation.
IEEE, pp. 3757–3762.

Appendix

A. Background Fiber Bundles

Fiber bundles are based upon the concepts of equiva-
lence relations, and quotient spaces, with close ties to
constraint relaxation, and admissible heuristics. We provide
here a short overview about those concepts.

A.1. Equivalence Relations. An equivalence relation ∼ is
a binary relation on a space X such that for any elements x, y,
z 2 X we have x ∼ x (reflexive), if x ∼ y then y ∼ x
(symmetric) and if x ∼ y and y ∼ z then x ∼ z (transitive)
(Munkres 2000).

An equivalence relation partitions the space X into
disjoint subsets we call equivalence classes (Munkres
2000). Given an element x in X, the equivalence class of
x is the set of elements [x] = {yjy ∼ x}.

A.2. Quotient Spaces. We often like to simplify a space X
under an equivalence relation ∼ by taking the quotient.
Taking the quotient means that we compute the quotient
space Q = X/∼ under the quotient map π: X → Q. The
quotient space is the set of all equivalence classes im-
posed by ∼ on X. To manipulate those equivalence
classes, we can often represent the quotient space by
assigning an equivalence class to a point of a represen-
tative space. We define this representative space as a
space B under a (bijective) representative mapping ν:
Q → B (Lee 2003).

Let us consider an example. In Figure 11 (Left) we
show the plane R

2 with elements x = (x1, x2) under the
equivalence relation of vertical lines, that is, x ∼ x0 if
x1 ¼ x

0
1. An equivalence class [x] = {x0jx0 ∼ x} represents a

vertical line, that is, the set of points in R2 with equivalent

Orthey et al. 31

x1 value. Taking the quotient, we obtain the quotient
space Q ¼ R

2=∼ , the set of vertical lines inR2 (Figure 11
Middle). We can then represent Q by the representative
space R

1 by associating to each equivalence class (ver-
tical line) the real value x1 using the representative
mapping ν :Q→R

1 we define as ν([x]) = x1 (Figure 11
Right).

A.3. Constraint Relaxation. To approximate a complex
problem, we can often use the concept of constraint re-
laxation. Let X be a space and f :X →R be a constraint
function on X. To solve a planning problem on X, we need to
search through the free space Xf, which might have zero-
measure constraints or narrow passages. To simplify such a
problem, we replace the constraint function f by a con-
straint relaxation function fR under the condition

fRðxÞ ≤fðxÞ (26)

for any x in X.
We can explain this condition geometrically as an ex-

pansion of the free space Xf when using fR (Orthey and
Toussaint 2019). Constraint relaxations (Roubı́ček 2011)
are advantageous, because we can use solutions of the
relaxed problem as certified lower bounds on the solution of
the original problem.

A.4 Admissible Heuristics
In a search problem, we like to find paths through a state

space X to move from an initial element xI 2 X to a goal
element xG 2 X. When casting this as a search problem, we
often like to knowwhich state to expand next. A helpful tool
is the cost-to-go (or value) function h* :X →R which
defines the cost of the optimal path from any point to the
goal. An admissible heuristic is an estimate h :X →Rwhich
lower bounds h∗ as

hðxÞ ≤ h*ðxÞ (27)

for any x in X (Pearl 1984; Edelkamp and Schroedl 2011;
Aine et al. 2016). Admissible heuristics are important be-
cause we can use them to guarantee optimality and com-
pleteness in algorithms like A* (Hart et al. 1968; Pearl
1984) and to often decrease planning time significantly
(Aine et al. 2016).

B. Exponential Change

To model quick but smooth transitions between two
parameter values, we use an exponential decay function. Let
κ0 be the start and κ1 be the final parameter value. We model
the change between κ0 and κ1 using the exponential decay
function

κðtÞ ¼ ðκ0 � κ1Þexpð�λtÞ þκ1 (28)

with t 2R≥0 being the time or iteration number, κ(0) = κ0,
limt→∞κ(t) = κ1, exp being the exponential function and
λ2R≥0 being the decay parameter.

C. Meta-Analysis of Primitive Methods. As discussed in
Section 5, each bundle space primitive can be implemented
in multiple ways. To find out which method works best for
a specific algorithm, we perform a meta-analysis. In this
meta-analysis, we select each bundle algorithm QRRT,
QRRT*, QMP, and QMP* and vary its primitive methods.
We vary those methods by taking the runtime average over
the same set of environments as in Section 8 (except the
hypercube). We then present the results as ratios of the best
runtime. This means, to find the best sampling method for
QRRT, we let QRRT run on all environments with different
sampling method, then average the results for each
method. We then take the method with the lowest runtime
and assign it the ratio 1. All other runtimes are represented
as multiples of the lowest runtime.

The results are shown in Figure 12. We divide the results
into four groups. First, we compare the intrinsic metric to
the quotient space (QS) metric (left group). Second, we
compare the importance selection of a bundle space by
comparing uniform, exponential and epsilon greedy (middle
left). Third, we compare the graph sampling strategies,
namely, random vertex, random edge and degree vertex
(middle right). Finally, we compare the algorithms with
enabled find section method and without (right).

In the case of QRRT, we observe the best metric to be
the intrinsic metric (left) and that using the recursive find
section method, we can lower the runtime significantly
(right). However, for sampling and selection, we do not
have a clear best strategy. Instead, we observe that a
change in sampling or importance has a marginal influ-
ence on the performance. For the other three algorithms
QRRT*, QMP, and QMP*, we observe similar results.
One exception is QRRT*, where we observe the QS
metric and the no find section method to perform only
1.25 times worse.

C.1. Discussion of results. The results indicate that both
for sampling and importance selection, there is no clear
advantage of using either strategy. This suggests that either

Figure 11. Quotient space example. Left: Space R
2. Middle:

Quotient space Q ¼ R
2=∼ , the set of equivalence classes of

vertical lines. Right: Representative space R
1 under

representation mapping ν :Q→R
1 (Adapted from (Orthey et al.

2018)).

32 The International Journal of Robotics Research 43(1)

strategy can be chosen for the scenarios under investi-
gation. Further investigation is required to understand the
influence of sampling strategies over different types of
bundle spaces.

Concerning the metric and section method, the difference
in performance is significant. In detail, for all bundle
planners, both the intrinsic method, and the find section
method perform significantly better. The reason why the
intrinsic metric is better lies in its simplicity. While the
intrinsic metric can rapidly return values, the QS metric

requires an expensive graph search. While the QS metric is
more accurate, this is offset by its computational burden.
The reason why the find section method performs better is
due to independent movements of links caused by the
L1 interpolation. This is often a decisive factor to ensure that
colliding links are moved out of the way to clear the way
towards the goal. Most of the problems in our evaluations
benefit from this movement. An example is the box folding
task, where moving outer links towards the goal positions
increased our chances to find collision-free motions.

Figure 12. Meta-analysis of different implementations of bundle space primitives. Each graph shows the performance of QRRT, QRRT*,
QMP, and QMP* on the high-dimensional benchmark set by comparing four different primitives, the metric (intrinsic vs quotient
space), the importance selection (uniform, greedy, or exponential), the sampling strategy (random vertex, random edge, random degree
vertex), and having the sidestep section method. See Section 5 for details. The results are displayed as ratio compared to the value of the
best performing implementation in each category.

Orthey et al. 33

	Multilevel motion planning: A fiber bundle formulation
	1. Introduction
	1.1. Our contributions

	2. Related work
	2.1. Motion planning
	2.2. Multilevel motion planning
	2.2.1. Quotient spaces
	2.2.2. Constraint relaxations
	2.2.3. Admissible heuristics

	2.3. Exploiting additional information
	2.4. Fiber bundles and prior approaches

	3. Background on optimal motion planning
	4. Multilevel motion planning
	4.1. Fiber bundle formulation
	4.2. Bundle restrictions
	4.3. Bundle sections
	4.3.1. Lift
	4.3.2. Path section
	4.3.3. L2 section
	4.3.4. L1 section

	4.4. Bundle sequences
	4.5. Admissible fiber bundles
	4.6. Examples of fiber bundles
	4.6.1. Prioritized multi
	4.6.2. Tangent bundle and path-velocity decomposition

	5. Primitive methods on fiber bundles
	5.1. Restriction sampling
	5.1.1. Random vertex sampling
	5.1.2. Random edge sampling
	5.1.3. Random degree vertex sampling
	5.1.4. Path restriction sampling
	5.1.5. Neighborhood sampling

	5.2. Bundle space metric
	5.2.1. Intrinsic bundle metric
	5.2.2. Quotient space metric

	5.3. Bundle space importance
	5.3.1. Uniform
	5.3.2. Exponential
	5.3.3. Epsilon greedy

	5.4. Finding path sections
	5.4.1. Nonholonomic constraints

	6. Bundle space motion planners
	6.1. Bundle planner variants
	6.2. QRRT
	6.3. QRRT*
	6.4. QMP
	6.5. QMP*
	6.6. Open source implementation

	7. Analysis of bundle planners
	7.1. Assumptions
	7.2. Proof that restriction sampling is dense
	7.3. Inheritance of probabilistic completeness
	7.4. Inheritance of asymptotical optimality

	8. Evaluation
	8.1. Low
	8.1.1. 2
	8.1.2. 3
	8.1.3. 7
	8.1.4. 6

	8.2. High
	8.2.1. 100
	8.2.2. 21
	8.2.3. 24
	8.2.4. 30
	8.2.5. 37
	8.2.6. 48
	8.2.7. 54
	8.2.8. 72

	8.3. Cost analysis of high-dimensional scenarios

	9. Discussion
	9.1. Evaluation outlier
	9.2. Specifying fiber bundles

	10. Conclusion
	Declaration of conflicting interests
	Funding
	ORCID iD
	Notes
	References
	Appendix
	A. Background Fiber Bundles
	Outline placeholder
	A.1. Equivalence Relations
	A.2. Quotient Spaces
	A.3. Constraint Relaxation

	B. Exponential Change
	Outline placeholder
	C. Meta-Analysis of Primitive Methods
	C.1. Discussion of results

