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Abstract—Motion planning for robotic systems with complex
dynamics is a challenging problem. While recent sampling-based
algorithms achieve asymptotic optimality by propagating random
control inputs, their empirical convergence rate is often poor,
especially in high-dimensional systems such as multirotors. An
alternative approach is to first plan with a simplified geometric
model and then use trajectory optimization to follow the reference
path while accounting for the true dynamics. However, this
approach may fail to produce a valid trajectory if the initial
guess is not close to a dynamically feasible trajectory. In this
paper, we present Iterative Discontinuity Bounded A* (iDb-
A*), a novel kinodynamic motion planner that combines search
and optimization iteratively. The search step utilizes a finite
set of short trajectories (motion primitives) that are intercon-
nected while allowing for a bounded discontinuity between them.
The optimization step locally repairs the discontinuities with
trajectory optimization. By progressively reducing the allowed
discontinuity and incorporating more motion primitives, our
algorithm achieves asymptotic optimality with excellent any-time
performance. We provide a benchmark of 43 problems across
eight different dynamical systems, including different versions of
unicycles and multirotors. Compared to state-of-the-art methods,
iDb-A* consistently solves more problem instances and finds
lower-cost solutions more rapidly.

Index Terms—Kinodynamic Motion Planning, Trajectory Op-
timization

I. INTRODUCTION

K INODYNAMIC motion planning for robots remains a
challenging task, particularly when the objective is to

compute time-optimal plans. Fig. 1 showcases four interesting
problems: obstacle-free recovery motions from unstable con-
figurations with low-power quadcopters (Fig. 1d), swing-up
motions with acrobatic pole-copters among obstacles (Fig. 1c),
maneuvering an Ackermann steering car with a trailer through
a tight corridor (Fig. 1b), and a unicycle with asymmetric an-
gular speed bounds and a positive minimum velocity (Fig. 1a).
Together, these examples illuminate the key challenges in
kinodynamic motion planning: i) the diversity of the intended
robotic systems, ii) the nonlinearity of the dynamics, and iii)
nonconvex configuration spaces with narrow passages among
obstacles.

Supplementary video: https://youtu.be/GoznOEWbUb8. Website:
https://quimortiz.github.io/idbastar/. Code is available at
https://github.com/quimortiz/dynoplan.
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Fig. 1. Examples of kinodynamic motion planning problems. Start and goal
configurations are shown in green and red, respectively, while gray boxes
represent obstacles. We display some trajectories found by our algorithm,
iDb-A*, in blue. (a) A unicycle with asymmetric angular speed bounds and a
positive minimum velocity. (b) A car pulling a trailer. (c) Acrobatics with a
planar multirotor with an underactuated pendulum. (d) A recovery flight with
a quadrotor with a very limited thrust-to-weight ratio.

Current planning approaches are sampling-based, search-
based, optimization-based, or hybrid. Each of these methods
has its strengths and weaknesses. Sampling-based planners
[1], [2], [3] can find initial solutions quickly and have strong
guarantees for asymptotic convergence to an optimal solution
in theory. In practice, the initial solutions are far from optimal;
the convergence rate is low, and the solutions typically require
post-processing.

Search-based approaches [4], [5] can remedy some of
those shortcomings by connecting precomputed trajectories,
so-called motion primitives, using A* or related graph search
algorithms. Yet, the theoretical guarantees of A* only hold
to the selected discretization of the state space and the pre-
computed motions. Moreover, scaling this approach to higher
dimensions or general systems requires careful, frequently
hand-crafted design of the motion primitives, which requires
domain-specific knowledge and is impractical for many dy-
namical systems.
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Optimization-based planners [6], [7], [8], [9], [10] scale
polynomially rather than exponentially with the number of
state dimensions, which makes them better suited for high-
dimensional planning problems. However, these planners are,
in general, only locally optimal and thus require a good initial
guess both for the trajectory and the time horizon.

Thus, optimization approaches are typically combined with
a sampling-based planner that generates an initial path with
a simplified version of the dynamics, e.g., a geometric plan-
ner that avoids obstacles. This strategy is not guaranteed to
produce valid motion plans and requires in-depth knowledge
of the dynamical system to choose an informative, yet simple
enough, dynamics model. For instance, a simple linear position
model can be used to plan quadcopter motions around the
hovering state but fails to plan trajectories that recover from
upside-down configurations.

Our main contribution is Iterative Discontinuity Bounded
A* (iDb-A*), a novel kinodynamic motion planner that com-
bines a search algorithm, Discontinuity-Bounded A* (Db-A*),
and trajectory optimization in an Iterative fashion.

iDb-A* combines key ideas and strengths of the previously
introduced methods. We rely on a graph search with short
trajectories that are connected with bounded discontinuity
because it provides a theoretically grounded exploration-
exploitation trade-off. We avoid predefined discretization and
instead use a set of randomized motions similar to sampling-
based planning.

Introducing discontinuity when connecting primitives
(weighted euclidean distance between the end of one primitive
and the start of the next one) makes the search tractable: we
can reuse the primitives and have a finite number of states to
expand. While the output trajectory of the search algorithm is
not feasible, it can be used as an initial guess for trajectory
optimization that locally repairs the discontinuous trajectory
into a valid one. We execute search and optimization itera-
tively, where the value of the discontinuity bound decreases
with each iteration, and the number of primitives increases. For
large discontinuity bounds, the search is fast, but the optimizer
might fail to find a valid solution. For small bounds, the search
requires a longer runtime, but the optimizer has a better initial
guess. Thus, the iterative combination results in an efficient
anytime planner with probabilistic optimality guarantees.

Our algorithm is implemented in C++ and is publicly avail-
able. Our second contribution is an open-source benchmark
that compares the three major kinodynamic motion planning
techniques on the same problem instances. While we focus in
our evaluation on time optimality, our approach supports other
cost functions that are additive and non-negative (e.g., energy
or squared acceleration).

Statement of Extension: This article is based on our
previous conference paper [11], but it provides algorithmic
improvements, a faster implementation, and a more extensive
evaluation, which includes several problems that require ob-
stacle avoidance and aggressive movements with flying robots.

New Algorithmic Contributions:

• A new strategy to optimize trajectories with free terminal
time in the optimization step of iDb-A*.

• The generalization of iDb-A* from translation-invariant
systems to systems without invariance (e.g., the acrobot),
or with additional linear velocity invariance (e.g., multi-
rotors).

Additionally, we provide a refined theoretical analysis and
an ablation study of different components, including various
optimization strategies, heuristics, and motion primitives.

II. RELATED WORK

Search-based approaches rely on existing methods for dis-
crete path planning, such as A* and its variants. The common
approach is to generate short trajectories (motion primitives)
using a state lattice—a pre-specified discrete set of states [12],
[13]. Each primitive starts and ends at a grid cell, and swept
cells can be precomputed for efficient collision checking. Once
motion primitives are computed, existing algorithms such as
A* or an anytime variant (e.g., Anytime Repairing A* [14])
can be employed without modification, providing very strong
theoretical guarantees on both optimality and completeness
with respect to the chosen primitives. The major challenge is
selecting and computing effective motion primitives, especially
for high-dimensional systems [15], [16].

Sampling-based approaches build a tree T rooted at the
start state xs. During tree expansion, i) a random state xrand
in the state space is sampled, ii) an existing state xexpand ∈ T
is selected, and iii) a new state xnew is added with a motion
that starts at xexpand and moves towards xrand. The motions are
typically generated by propagating random control inputs, and
the classic version of this approach, kinodynamic RRT [17], is
probabilistically complete [18]. Asymptotic optimality can be
achieved when planning in state-cost space (AO-RRT) [19],
[20], [21] or by computing a sparse tree (SST*) [1]. These
methods rely on a distance function and often require fast
nearest neighbor data structures, such as k-d trees, for effi-
ciency.

Sampling-based approaches are designed to explore the state
space as rapidly as possible and typically do not explicitly use
a heuristic function, unlike search-based methods. Instead, the
exploration/exploitation trade-off is controlled by using goal-
biasing. In these approaches, the goal constraint is typically
reformulated using a goal region rather than a goal state.

Optimization-based approaches locally refine an initial
trajectory using the gradients of the cost function, dynamics,
and collision constraints, unlike the previous gradient-free
methods. The trajectory optimization problem can be formu-
lated as a finite-dimensional nonlinear program (NLP) using
either direct collocation or shooting methods [22], and solved
with general-purpose nonlinear solvers (e.g., [23], [24]).

For instance, TrajOpt [6] and GuSTO [7], [25] rely on direct
transcription and sequential convex programming (SCP), while
KOMO [8] combines direct transcription with the Augmented
Lagrangian algorithm.

Trajectories can also be computed with optimal control
solvers based on Differential Dynamic Programming [26], [27]
or the iterative Linear Quadratic Regulator (iLQR) [9].

All optimization-based approaches require an initial guess
as a starting trajectory, but this guess does not necessarily

This article has been accepted for publication in IEEE Transactions on Robotics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TRO.2024.3502505

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on January 06,2025 at 11:13:13 UTC from IEEE Xplore.  Restrictions apply. 



need to be feasible. For nonlinear dynamics and constraints,
optimization approaches are incomplete and might fail or
converge to a local optimum. In fact, they often converge to
infeasible solutions unless the initial guess is close to a feasible
solution. When successful, the solution quality is significantly
higher (e.g., in terms of smoothness) compared to sampling-
based or search-based approaches. Moreover, optimization-
based approaches do not suffer directly from the curse of
dimensionality, although higher dimensions might result in
more local optima.

Hybrid approaches combine search, sampling, and opti-
mization. For instance, one can combine search and optimiza-
tion [28], search and sampling [29], [2], [30], or combine
sampling and optimization [31], [32]. For some dynamical
systems, using insights from control theory for motion plan-
ning can also be beneficial [33], [34], [35], but it requires
domain knowledge. Motion planning can also benefit from
using machine learning for computational efficiency [36], [37].

Our algorithm, iDb-A*, combines ideas and tools from the
three main approaches to kinodynamic motion planning. The
most closely related works are methods that reuse edges within
a sampling-based planning framework [30] and search-based
methods with duplicate detection [38]. Compared to these
works, we include trajectory optimization and reuse locally
optimal precomputed motion primitives interconnected with
bounded discontinuity for better success and faster conver-
gence.

Apart from the aforementioned approaches, a popular ap-
proach to kinodynamic motion planning problems is to first
plan with simplified dynamic models and to use trajectory
optimization or a local controller to follow the reference path
while accounting for the true dynamics. The simplest model is
a geometric model (holonomic, first-order integrator), which
enables geometric motion planning with, e.g., RRT, RRT*,
PRM, or PRM* [39], [40], [41]. Second-order systems can be
approximated by a double integrator linear model [42].

The trajectories computed with simplified dynamics can
then be used as initial guesses for trajectory optimization
(that is, optimization-based approaches as previously dis-
cussed), model predictive control, or system-specific con-
trollers for quadcopters [43], unicycle-like robots [44], or car-
like robots [45]. System-specific motion planners can exploit
certain properties of the dynamics, such as differential flat-
ness in quadcopters, which allows faster motion planning as
shown for quadcopters [46] and for some specific fixed-wing
UAVs [47]. However, differential flatness cannot account for
actuation constraints directly—leading to either conservative
or infeasible trajectories, especially for small UAVs with a
low thrust-to-weight ratio.

Notably, planning with simplified dynamics does not guar-
antee the generation of valid motion plans and demands an
in-depth understanding of the dynamical system. In our al-
gorithm, iDb-A*, connecting motion primitives with bounded
discontinuity during the search step can be interpreted as an
alternative form of simplified dynamics. However, iDb-A*
is complete and asymptotically optimal because it combines
search and optimization in an iterative fashion, increasing
the number of motion primitives and reducing the allowed

discontinuity in each iteration.

III. PROBLEM DESCRIPTION

We consider a robot with a continuous state x ∈ X (e.g.,
X ⊆ Rdx ) that is actuated by actions u ∈ U ⊂ Rdu .
The dynamics of the robot are deterministic, described by a
differential equation,

ẋ = f(x,u). (1)

To employ gradient-based optimization, we assume that we
can compute the Jacobian of f with respect to x and u,
typically available in systems studied in kinodynamic motion
planning, such as mobile robots or rigid-body articulated
systems. We use Xfree ⊆ X to denote the collision-free space,
i.e., the subset of states that are not in collision with the
obstacles in the environment.

We discretize the dynamics (1) with a zero-order hold, i.e.,
we assume the applied action is constant during a time step
of duration ∆t. The discretized dynamics can then be written
as,

xk+1 ≈ step(xk,uk) ≡ xk + f(xk,uk)∆t , (2)

using a small ∆t to ensure the accuracy of the Euler ap-
proximation. We use K ∈ N to denote the number of time
steps (which is not fixed but subject to optimization), X =
⟨x0,x1, . . . ,xK⟩ to denote the sequence of states sampled
at times 0,∆t, . . . ,K∆t and U = ⟨u0,u1, . . . ,uK−1⟩ to
denote the sequence of actions applied to the system for the
time frames [0,∆t), [∆t, 2∆t), . . . , [(K − 1)∆t,K∆t). The
objective of navigating the robot from its start state xs to a
goal state xg can then be framed as the optimization problem,

min
U,X,K

J(U,X) , (3a)

s.t. xk+1 = step(xk,uk) ∀k ∈ {0, . . . ,K − 1} , (3b)
uk ∈ U ∀k ∈ {0, . . . ,K − 1} , (3c)
xk ∈ Xfree ⊆ X ∀k ∈ {0, . . . ,K} , (3d)
x0 = xs; xK = xg , (3e)

with the cost term J(U,X) =
∑K−1

k=0 j(uk,xk)∆t, where
j(uk,xk) ≥ 0. In this paper, we will focus on time-optimal
trajectories, i.e., j(uk,xk) = 1; J(U,X,K) = K∆t, but
our framework can be applied to optimize any additive cost
function, for example, minimum control effort j(uk,xk) =
∥uk∥2.

We assume the dynamics function step(x,u), control space
U , state space X , and cost function j(x,u), are known before
solving the problem, which allows us to precompute motion
primitives.

Example 1. Consider a unicycle robot with state x =
[x, y, θ] ∈ R2 × SO(2), i.e., x, y are the position and θ is
the orientation. The actions are u = [v, ω] ∈ U ⊂ R2, i.e.,
the speed and angular velocity can be controlled directly. The
dynamics are ẋ = [v cos(θ), v sin(θ), ω]. The choice of U can
make this low-dimensional problem challenging to solve. For
example, Fig. 1a shows a plane-like case (positive minimum
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(a) (b) (c) (d)

Fig. 2. Visual representation of iDb-A* in the problem Planar rotor – Recovery obstacles (i.e., a recovery maneuver with a planar multirotor). Start and goal
configurations are shown in solid green (note that the multirotor starts upside down) and red, respectively. (a) In the search step of iDb-A*, called Db-A*,
we expand states (in this case, the initial state) using motion primitives that are applicable with bounded discontinuity. (b) Intermediate search tree during the
execution of Db-A*. For visualization, the 6D configuration space is projected into a 2D space. (c) Solution found by Db-A*. The transparent, border-only
green and red shapes show the start and end of each motion primitive, respectively. They do not match exactly, which highlights the allowed discontinuities
when stitching motion primitives (note that the discontinuities in the velocities are not shown in this 2D representation). (d) The output of Db-A* is used to
warm-start nonlinear trajectory optimization. The resulting trajectory, shown in blue, fulfills the dynamics constraints and is locally optimal.

speed, i.e., 0.25 ≤ v ≤ 0.5 m/s) with a malfunctioning rudder
(asymmetric angular speed, i.e., −0.25 ≤ ω ≤ 0.5 rad/s).

Example 2. Consider a quadrotor x = [p,v,q,w] in R9 ×
SO(3) where p represents the position, v is the velocity, q
represents the orientation using a quaternion, and w is the
angular velocity in the body frame. The control input is the
force at each rotor, u ∈ R4. The dynamics are,

v̇ = m−1R(q)B1u+ g, (4a)

ẇ = I−1(B0u−w × Iw), (4b)

ṗ = v, q̇ =
1

2
q⊗w, (4c)

where m is the mass, I represents the inertia matrix, g is
the gravity vector, R(q) is the rotation matrix corresponding
to the quaternion q, and ⊗ denotes the quaternion product.
The matrices B0,B1 ∈ R3×4 are constant and depend on
the quadcopter’s geometry. The parameters of the Bitcraze
Crazyflie 2.1 robot are used, which, with a very low thrust-
to-weight ratio of 1.3 (i.e., 0 ≤ ui ≤ 1.3 × g × m/4), pose
significant challenges for kinodynamic motion planning.

IV. IDB-A* - OVERVIEW

Our iterative approach, which combines search and opti-
mization, is detailed in Algorithm 1. We require a large set
of motion primitives ML, which will be used incrementally
and can be computed offline. Motion primitives are short
trajectories that fulfill our dynamics (see Definition 1 and
Section VII for a formal definition and details on primitive
generation). In every iteration of iDb-A*, the following steps
are performed:

1) We increase the number of available motion primitives
for the search (by choosing new primitives from ML)
and decrease the allowed discontinuity bound δ (Lines 4
and 5).

2) The discrete planner, Db-A*, computes a trajectory
using the current set of motion primitives. This trajec-
tory may include a bounded violation of the dynamic
constraints (Db-A* in Line 6, see Section V).

3) The result of Db-A* is used to initialize an optimization-
based motion planner that attempts to compute a
feasible and locally optimal trajectory (Line 8). See
Optimization (Section VI).

4) Additional motion primitives are extracted from the
output of the trajectory optimization (Extract
Primitives in Line 12).

iDb-A* executes a sequence of A*-searches using a grow-
ing, randomized set of motion primitives, akin to Batch In-
formed Tree (BIT*) [48], a successful sampling-based planner
for geometric motion planning. In each iteration, the compu-
tation time and the success of the search and optimization
steps depend on the number of motion primitives ni = |Mi|
and the allowed discontinuity bound δi. We can choose
AddPrimitives (Line 4) and DecreaseDelta (Line 5)
so that these parameters converge to, respectively, ∞ and 0
to ensure asymptotic optimality (see Section VIII). In our
implementation, we choose geometric sequences ni+1 = ninr

and δi+1 = δiδr, with nr > 1, δr < 1, and initial values n0,
δ0, but different sequences are also possible. In particular, we
find this strategy easier to tune than the alternative approach
presented in our prior work [11], where we choose only the
scheduling for the number of motion primitives and estimate
the discontinuity bound based on a desired branching factor.

Motion primitives can also be extracted online in Algo-
rithm 1. The ExtractPrimitives procedure utilizes the
output of the optimization by dividing the trajectory into small
sections. The resulting primitives can be particularly useful for
the planning problem at hand as they are computed with full
knowledge of the environment.

A visual representation of some key components of iDb-A*
is shown in Fig. 2 using the problem Planar rotor – Recovery
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xs

xg

(a) Db-A* – 1

xs

xg

(b) Db-A* – 2

xs

xg

(c) Db-A* – 3

xs

xg

(d) Optimization

Fig. 3. (a, b, c) A graphical description of Db-A*. The gray edges represent motion primitives, and the states xs and xg are the start and the goal, respectively.
(a) Given an initial state xs, we can only apply primitives that start with a discontinuity lower than αδ (gray circumference) and are collision-free. The
applicable primitives are shown with solid black edges. (b) The search is ordered by a heuristic (e.g., the Euclidean heuristic, shown with a dotted line for
the best node) and the cost-to-come. When expanding a node, we create new states only if they are not within (1 − α)δ of a previously discovered state
(i.e., the dashed edge is not expanded). (c) The search is terminated when a node close to the goal is expanded. (d) The solution of Db-A* will be used to
warm-start a trajectory optimization algorithm that repairs the discontinuities and locally optimizes the trajectory. The optimized trajectory is shown in blue.

Algorithm 1: iDb-A* – Iterative Discontinuity
Bounded A*

Input: xs,xg , step,Xfree,U ,ML

Result: X,U
1 M0 ← ∅ ▷ Initial Set of motion primitives
2 cmax ←∞ ▷ Solution cost bound
3 for i = 1, 2, . . . do
4 Mi ←Mi−1 ∪ AddPrimitives(ML, i)
5 δi ← DecreaseDelta(i)
6 Xd,Ud ← Db-A*(xs,xg ,Xfree,Mi, δi, cmax)
7 if Xd,Ud successfully computed then
8 X,U← Optimization(Xd,Ud,xs,xg , step,Xfree,U)
9 if X,U successfully computed then

10 Report(X,U) ▷ New solution found
11 cmax ← min(cmax, J(X,U)) ▷ Cost bound

12 Mi ←Mi ∪ ExtractPrimitives(X,U)

obstacles.

V. DISCONTINUITY BOUNDED A* SEARCH

Discontinuity Bounded A* (Db-A*) is a search algorithm
that uses a set of motion primitives, which are connected while
allowing for a maximum discontinuity.

A motion primitive is a sequence of states and controls that
fulfill the dynamics of the system. Formally,

Definition 1 (Motion Primitive). A motion primitive m =
(X,U,xs,xf , c) is a sequence of states X = (x0, . . . ,xN ),
xk ∈ X , and controls U = (u0, . . . ,uN−1), uk ∈ U that
fulfill the dynamics xk+1 = step(xk,uk). It connects the
start state xs = x0 and the final state xf = xN , with a
corresponding cost c ∈ R+. The length of the motion primitive
(i.e., the number of states and controls) is randomized.

In the following, we rely on a user-specified metric d :
X×X → R+, which measures the distance between two states
(e.g., a weighted Euclidean norm). We assume that ⟨X , d⟩ is
a metric space in order to use efficient nearest-neighbor data
structures, such as k-d trees.

Definition 2. The pair of sequences X = ⟨x0, . . . ,xK⟩, U =
⟨u0, . . . ,uK−1⟩ is a δ-discontinuity bounded solution (with

δ > 0) to the kinodynamic motion planning problem (3) if
and only if the following conditions hold:

d(xk+1, step(xk,uk)) ≤ δ ∀k ∈ {0, . . . ,K − 1} , (5a)
uk ∈ U ∀k ∈ {0, . . . ,K − 1} , (5b)
xk ∈ Xfree ∀k ∈ {0, . . . ,K} , (5c)

d(x0,xs) ≤ δ , (5d)
d(xK ,xg) ≤ δ . (5e)

Intuitively, Definition 2 enforces that the sequences connect
the start and goal states with a bounded error δ in the dynam-
ics, which corresponds to “stitching” primitives together.

A. Algorithm

Our approach to computing such sequences is Discontinuity
Bounded A* (Db-A*).

Db-A*, like A*, is an informed search that relies on a
heuristic h : X → R to explore an implicitly defined directed
graph efficiently. Nodes in the graph represent states, and an
edge between two nodes indicates that there exists a motion
that connects the states, allowing up to δ-discontinuity.

The algorithm is shown in Algorithm 2, and Fig. 3 provides
a graphical representation. Db-A* keeps track of nodes to
explore using a priority queue, which is sorted by the lowest
f(x) = g(x) + h(x) value, where g(x) is the cost-to-come.
The overall structure is the same as in A*: The OPEN priority
queue O is initialized with the start state (Line 1). At each
iteration, we remove the first element from O (Line 3), and that
node is expanded using the applicable collision-free motion
primitives (Lines 8 to 10). A motion m is applicable in state
x if its start state m.xs is within a distance of at most αδ
(Line 7), resulting in a new state m.xf .

New states are added to O (Line 17) only if they are not
within (1 − α)δ of previously discovered nodes. If the state
is close to a previous node, the previous node is updated if
the new cost-to-come is reduced (Line 22). Therefore, unlike
A*, we consider two states to be equivalent if they are within
(1− α)δ of each other.

For computing and updating the cost to come, we consider
the cost of the motion primitive m.c and the cost of the discon-
tinuity bound using a lower bound function l : X ×X → R+
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Algorithm 2: Db-A* – Discontinuity Bounded A*
Input: xs,xg ,Xfree,M, δ, cmax

Result: Xd,Ud or Infeasible
1 O ← {Node(x : xs, g : 0, h : h(xs), p : None, a : None)}

▷ Initialize open list (priority queue)
2 C ← {} ▷ Initialize list of closed nodes
3 while |O| > 0 do

▷ Remove node with lowest f-value
4 n← PriorityQueuePop(O)
5 if d(n.x,xg) ≤ δ then
6 return Xd,Ud ▷ Trace back solution

▷ Find applicable motion primitives with discontinuity up to αδ
7 M′ ← NearestNeighborQuery(n.x,M, αδ)
8 foreach m ∈M′ do
9 if m /∈ Xfree then

10 continue ▷ Motion is not collision-free

11 x′ ← m.xf ▷ Tentative new state
12 g′ ← n.g +m.c+ l(n.x,m.xs) ▷ Tentative g score
13 if g′ > cmax then
14 continue

▷ Check if we have previously discovered states within (1−α)δ
15 N = NearestNeighborQuery(x′,O ∪ C, (1− α)δ)
16 if N = ∅ then
17 PriorityQueueInsert (O, Node(x′, g′, h(x′), n,m))

18 else
19 foreach s ∈ N do
20 g′′ = g′ + l(x′, s.x)
21 if g′′ < s.g then
22 s = UpdateNode({g : g′′, p : n, a : m}) ▷ Update

node. If it is in closed list, reinsert in open list.

23 Insert n in C
24 return Infeasible

of the true cost. Therefore, given a state x with cost to come
g(x), the cost of a new state x′ = x ⊕ m = m.xf is
g(x′) = g(x) + l(x,m.xs) +m.c (Line 12).

The search terminates when we find a node that is within
δ distance of the goal state (Line 6).

For efficient search, we employ two k-d trees. The first
tree indexes the start states of all provided motion primitives,
which can be done once at the beginning. The second k-
d tree contains the states of all explored nodes and grows
dynamically. It is used to find nearby previously explored
states. The discontinuity with a magnitude of up to δ may
occur in two cases: first, when we select suitable motion
primitives for expansion (Line 7), and second, when we
prune a potential new node in favor of already existing states
(Line 19). The tradeoff between the two can be adjusted by a
user-specified parameter α ∈ (0, 1).

B. Heuristic Functions

In kinodynamic motion planning, three heuristic functions
h(x) are particularly relevant:

a) Euclidean Heuristic: The Euclidean heuristic is based
on the Euclidean distance to the goal, considering state and
control constraints such as maximum velocity or acceleration,
while ignoring dynamics and obstacles. It is usually computed
by a combination of weighted Euclidean or infinity norms and
does not require any precomputation.

b) Roadmap Heuristic: The Roadmap heuristic approxi-
mates the collision-free space using a geometric roadmap, thus
taking collisions and control bounds into account but ignoring
the dynamics. It requires a precomputation step to build the
geometric roadmap, which can be reused between iterations of
iDb-A*, and it is usually more informative in problems where
obstacles play a significant role. Given a finite set of state-cost
pairs S = {(si, ci)| si ∈ X , ci ∈ R}, the heuristic function is
given by:

h(x) = min
(si,ci)∈S: d(si,x)≤R

{ci + l(si,x)} , (6)

where l is a lower bound on the cost for reaching si from
x, and R is a user-defined connection radius. To compute S,
we construct a roadmap with randomly sampled configurations
and annotate each vertex with the geometric cost-to-go (i.e.,
using the Euclidean heuristic for each collision-free edge).
Each query requires a nearest-neighbor search (implemented
using a k-d tree).

c) Blind Heuristic: Lastly, we also evaluate the Blind
heuristic, where h(x) = 0, ∀x. This heuristic is motivated
by systems where the dynamics play a central role, such
that feasible trajectories of the robot strongly differ from
straight lines in the state space (e.g., the acrobot), making
the Euclidean and Roadmap heuristics uninformative.

The three heuristic functions are evaluated during the ex-
perimental evaluation (Section IX).

Example 3. Consider the unicycle robot, with state and
dynamics as in Example 1. Given a state x = [x, y, θ],
goal g = [gx, gy, gθ], and the control bounds |v| ≤ vmax,
|w| ≤ wmax, the Euclidean heuristic is:

h(x) = max{ v−1
max ∥[x, y]− [gx, gy]∥ ,
w−1

maxDθ(xθ, gθ)} , (7)

where Dθ(·, ·) is the distance metric in SO(2).

C. Equivalence Between Continuous States

A fundamental issue when applying search algorithms in
continuous spaces is that the set of possible reachable states
is infinite. The search algorithm will unnecessarily expand
similar states, especially when the heuristic is not informative.

To mitigate this issue, in Db-A* we have defined a notion
of similarity or equivalence between states, often referred to
as duplicate detection in related work [38], [49], [50]. In
Algorithm 2, a state is considered not novel if it is close
to a previously discovered state, in which case the state is
pruned. This makes Db-A* incomplete and suboptimal for
fixed values of δ. As Db-A* runs for decreasing δ inside iDb-
A*, the size of the equivalence class is iteratively reduced.
In combination with subsequent optimization, we found our
duplicate detection to be sufficient for both good practical
performance and asymptotic optimality (Section VIII).

D. Invariance and Equivariance in the Motion Primitives

To decide which motion primitives are applicable in a state
(Line 7), we can exploit invariance and equivariance in the
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system dynamics, which allows us to reuse the same primitive
in different states with smaller discontinuities.

A prominent example is the translation invariance of the dy-
namics of mobile robots. Intuitively, a valid motion primitive
can be “translated” to match other starting states so that there
is no discontinuity in the translation components of the state.
This concept is formalized in Section VII, where we provide
two examples: translation invariance for a car-like robot and
translation and linear velocity invariance for flying robots.

From an implementation perspective, to account for invari-
ances, all primitives are stored in a canonical form (e.g., with
0 translation component) inside a k-d tree. At runtime, we
transform the query state into the canonical form to check
which primitives are applicable, and the valid primitives are
then transformed on-the-fly to expand the query state.

E. Efficient Collision Checks with Collision Shapes

Collision checking is one of the most expensive operations
in motion planning. To check collisions between the environ-
ment and a motion primitive (Line 9), we use either precom-
puted collision shapes of the motion primitive (if available) or
check collisions at a small temporal resolution. Importantly,
precomputed collision shapes can also be transformed online
for any translation or rotation of the motion primitive. When
available, collision shapes are considerably faster than check-
ing individual configurations at a chosen resolution.

In practice, we observe that the running time of Db-
A* is dominated by both nearest neighbor searches to find
neighboring states and applicable motion primitives, and by
collision detection (see Fig. 7 in Section IX-E).

VI. TRAJECTORY OPTIMIZATION

For the Optimization subroutine (Line 8 in Algo-
rithm 1), we use gradient-based trajectory optimization. We
assume that the derivatives of the dynamics, the distance func-
tion, and the collision constraints can be computed efficiently,
e.g., using analytical expressions, a differentiable simulator,
or finite differences. For collisions, we now require a signed
distance function instead of a binary collision check.

The objective of the optimization is to solve the original
kinodynamic motion planning problem (3), using the output
of Db-A* as an initial guess, Xd = {x0,x1, . . . ,xK}, Ud =
{u0,u1, . . . ,uK−1}.

Even with the initial guess from Db-A*, the optimization
problem (3) is challenging for gradient-based optimization,
especially when starting with large discontinuities.

The problem is nonconvex even for systems with linear
dynamics and constraints, and the infeasible initial guess and
underactuation of the systems prevent the use of time-optimal
path tracking approaches (e.g., [51], [52]).

For the optimization step of iDb-A*, we choose to perform
a joint optimization of trajectory and terminal time using
nonlinear optimization.

a) Joint Optimization of Trajectory and Terminal Time
(Free-dt): This approach adds the duration of the time interval

as an optimization variable for joint nonlinear optimization of
time and trajectory:

min
X,U,∆t

∑
k

∆t j(xk,uk) , (8a)

s.t. xk+1 = xk + f(xk,uk)∆t , (8b)
Constraints (3c), (3d) and (3e). (8c)

Here, ∆t is a variable, initialized to ∆tref, the reference value
used for time-discretization in the motion primitives for the
given dynamical system. The number of time steps K is
fixed. After solving (8), we would like to have the solution
trajectory discretized with the original time step duration
for consistency. Thus, we recompute the state and control
trajectories using the reference time step ∆tref. This requires i)
interpolation of the solution of (8) with ∆tref, and ii) a second
run of trajectory optimization, now with fixed ∆t = ∆tref
to repair the small errors arising from the Euler integration
with different step sizes (note that the second optimization is
very efficient because the interpolation of the solution of (8)
is already accurate).

b) Algorithm for Trajectory Optimization: Our approach
to trajectory optimization requires solving nonlinear optimal
control problems. In our previous work [11], we used a
direct control method (where both states and controls are
variables), namely k-order optimization [8], and the Aug-
mented Lagrangian algorithm. In this revised version, we
switch to an indirect control method (where only controls are
variables), Differential Dynamic Programming (DDP), which
ensures precise dynamics during shooting and therefore more
reliable convergence to locally optimal solutions in systems
with complex dynamics.

Differential Dynamic Programming is a second-order
method for solving optimal control problems that iteratively
computes a quadratic approximation of the cost-to-go using a
backward pass and updates states and controls using a forward
pass. For more details, we refer to [26], [53]. To deal with
collisions, goal constraints, and state and control bounds, we
use a squared penalty method—adding all constraints in the
cost term with a squared penalty.

In particular, we use feasibility-driven DDP [26], which can
be warm-started with an infeasible sequence of states and ac-
tions, providing a good balance between local convergence and
globalization. Importantly, we emphasize that users may use
other formulations and constrained optimization algorithms to
solve (8). In our experiments, we also evaluate a multiple
shooting formulation solved with Sequential Quadratic Pro-
gramming (SQP) [54].

c) Alternative approaches for optimizaion of trajectories
with free terminal time: We also evaluate three additional
formulations for the optimization step of iDb-A*, based on
different approaches in the optimization and control literature:
a hierarchical time search, and two sliding window approaches
that try to repair the trajectory in a sequential fashion, based
on receding horizon model predictive control and contouring
control. These methods are described in Section A in the
appendix.
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VII. MOTION PRIMITIVES

In our framework, we define a motion primitive as a
valid trajectory that fulfills the dynamics, control, and state
constraints, disregarding collisions with the environment. A
formal definition is provided in Definition 1 in Section V.

A. Generation of Locally Optimal Motion Primitives

In the problem setting outlined in Section III, a key observa-
tion is that motion primitives can be precomputed because they
are independent of the collision-free space and the start and
goal configurations of a particular motion planning problem.

Our algorithms, iDb-A* and Db-A*, are agnostic about how
the primitives have been generated. However, the theoretical
properties of the algorithms depend on the properties of the
set of primitives (Section VIII). In our implementation of iDb-
A*, we use locally optimal motion primitives computed with
trajectory optimization.

To generate motion primitives, we solve two-point boundary
value problems with random start and goal configurations in
free space using nonlinear optimization. In contrast to the typ-
ical approach in sampling-based motion planning of sampling
control sequences at random, our strategy results in a superior
primitive distribution, especially for systems with unstable
dynamics (e.g., flying robots). Our approach achieves better
coverage of the state space and produces smoother and lower-
cost motion primitives, which are key factors contributing to
the success of the algorithm (see Section IX).

Specifically, we generate motion primitives offline using
the following three steps: First, uniform random sampling of
start and goal configurations in free space; second, solving (3)
with trajectory optimization using the hierarchical time search
approach and a trivial initial guess; and third, splitting the
resulting motion into multiple pieces of random length.

We observe that our strategy generates a good distribution
of motion primitives. However, it requires several hours of
offline computation with a standard CPU. In the case of flying
robots, most of the time is spent attempting to find trajectories
where the goal is not reachable within the given time horizon
or where trajectory optimization fails to converge. Our sam-
pling approach might bias the primitives’ distribution towards
configurations that are easy to connect to other configurations.
However, the results in Section IX confirm that the primitives
are diverse and can solve a wide range of problems.

B. Invariance and Equivariance in System Dynamics

Several robotic systems of interest exhibit symmetries and
invariances in the dynamics that can be exploited to reduce
the required number of motion primitives for planning.

Specifically, invariance/equivariance enables the adaptation
of primitives on-the-fly to match some components of the
state space exactly in our search algorithm, Db-A*. This
significantly reduces the number of primitives required to
cover the state space, resulting in smaller discontinuities,
reduced memory requirements, and faster nearest neighbor
searches.

A prominent example is translation invariance, a property
that holds for many mobile robots, such as differential-drives,

cars, airplanes, and multirotors. In these systems, we can
decompose the state into two components, x = [xt,xr],
where xt represents translations and xr contains rotations and
possibly velocities. The dynamics f(x,u) = f(xr,u) only
depend on the non-translation part of the state.

We are interested in invariances that preserve optimality. For
instance, the translation of a primitive in translation invariant
systems retains optimality for a running cost of type j(x,u) =
r(u), e.g., a minimum time trajectory r(u) = 1, or minimum
control effort r(u) = ∥u∥2.

Example 4 (Translation Invariance in the Unicycle). Con-
sider the unicycle from Example 1. The dynamics f(x,u) =
f(θ,u) = [v cos(θ), v sin(θ), w] depend only on the ori-
entation θ, but not on the position [x, y]. Using transla-
tion invariance, we can translate a motion primitive m =
(X,U,xs,xf , c) with t ∈ R2, resulting in m ⊕ t = m′ =
(X′,U′ = U,x′

s,x
′
f , c

′ = c). The states in X′, x′
s, and x′

f

are transformed as follows:

x′[x] = x[x] + t[x] , (9a)
x′[y] = x[y] + t[y] , (9b)
x′[θ] = x[θ] . (9c)

The operator [•] indicates the •-component of a state x or
translation vector t (e.g., x[x] ∈ R is the “x-component” of
the state x).

In some second-order systems, such as the quadrotor, the
acceleration depends only on the orientation and the angular
velocity but is invariant to both translation and linear velocity.
Thus, we can modify primitives to match the starting position
and velocity.

Example 5 (Translation and Linear Velocity Invariance in the
Quadrotor). The second-order dynamics of the quadrotor from
Example 2 depend only on the rotation and angular velocity
q,w but not on the position p or linear velocity v. We can
transform a motion primitive m = (X,U,xs,xf , c) with t =
[tp, tv], tp ∈ R3, tv ∈ R3, resulting in m ⊕ t = m′ =
(X′,U′ = U,x′

s,x
′
f , c

′ = c). The states in X′, x′
s, and x′

f

are transformed as follows:

x′[v] = x[v] + tv, (10a)
x′[w] = x[w], (10b)
x′[q] = x[q], (10c)
x′
k[p] = xk[p] + tp + ktv∆t. (10d)

While invariance and equivariance are advantageous prop-
erties, they require an individual study of each new dynam-
ical system. For simplicity, in our work, we focus only on
translation invariance and linear velocity invariance as two
classical and ubiquitous properties. Additional properties, such
as rotation invariance (for car-like robots), rotation symmetries
(for 3D quadcopters), or angular rotational invariance (for
planar multirotors), could be exploited to improve performance
in particular systems.

VIII. THEORETICAL PROPERTIES

In this section, we analyze the theoretical properties of iDb-
A* and argue that it is asymptotically optimal under very mild
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assumptions. Intuitively, given enough computational time,
iDb-A* (Algorithm 1) will compute the optimal solution,
because in each iteration, we add more primitives and reduce
the allowed discontinuity δ, eventually producing an initial
guess that is close to the optimal solution, which is then locally
repaired and optimized with trajectory optimization.

A. Kinodynamic Motion Planning

Assumption 1. The dynamics function (1) has a bounded
Lipschitz constant for both states and controls. Moreover, there
exists a δ-robust trajectory that solves the kinodynamic motion
planning problem.

Note: A δ-robust trajectory has both obstacle clearance and
dynamical clearance of δ. These assumptions are standard
in kinodynamic motion planning, and we refer to [21] for a
formal definition.

Remark 1. In a system with Lipschitz dynamics, the discrete-
time dynamics converge to the continuous-time dynamics as
the time step discretization approaches zero. Thus, we limit our
study to the time-discretized system (2) used in our framework.

B. Db-A*

Theorem 1. Sequences X and U returned by Db-A* (Algo-
rithm 2) are δ-discontinuity bounded solutions to the given
motion planning problem (Definition 2).

Proof. When Db-A* terminates, we trace back the solution
by following the parent pointers and obtain a sequence of
motion primitives [m1, . . . ,mN ]. This sequence defines the
sequence of controls U = [m1.U, . . . ,mN .U], and states
X = [m1.X[:−1], . . . ,mN .X], i.e., we take all but the last
state for each primitive except for the last one, which should
also include the last state. During Db-A*, we expand a node
n with a motion m if the start state m.xs is at most αδ
away from the current state n.x. Any node n is reached by a
motion m̃ that ends at point m̃.xf , which is at most (1−α)δ
from n.x. Using the triangle inequality of the metric space,
d(m̃.xf ,m.xs) ≤ d(m̃.xf , n.x) + d(n.x,m.xs) ≤ δ. Thus,
(5a) holds for all connections between motion primitives, and
(5d) holds for the state in the first motion. We already know
that xk ∈ X , uk ∈ U for all k (5b). Motions are only used
as edges if the entire motion is within Xfree, thus (5c) holds.
Finally, (5e) holds by the termination conditions.

Definition 3. Given a start state xs and a goal state xg , a
set of motion primitives M, and a discontinuity bound δ, we
define the implicit graph Gδ,M = (V,E) with,

V =
⋃

m∈M
{m.xs,m.xf} ∪ {xs,xg} , (11a)

E = {(m.xs,m.xf ) | m ∈ M} ∪ {(m.xf ,m
′.xs)

| m,m′ ∈ M and d(m.xf ,m
′.xs) ≤ δ}

∪ {(xs,m.xs) | m ∈ M and d(xs,m.xs) ≤ δ}
∪ {(m.xf ,xg) | m ∈ M and d(m.xf ,xg) ≤ δ}. (11b)

Lemma 1. For an arbitrary fixed value of δ > 0, Db-A*
is incomplete and suboptimal when searching on the implicit
graph GM,δ .

Proof. Consider an example where a robot has to move
through a narrow door to navigate to an adjacent room.
Even if a δ-discontinuity bounded solution using the available
primitives exists (i.e., a path in the graph Gδ,M), Db-A* may
not find it because motions are expanded in a random order
and only if no previous node is within distance (1−α)δ. This
could potentially prune a node that is required in the solution.
Since Db-A* is incomplete, it cannot guarantee that no better
δ-discontinuity bounded solution exists once it finds one.

Theorem 2. For a given set of motion primitives M, there
exists a δ > 0 such that Db-A* is complete and optimal when
searching in the implicit graph GM,δ .

Proof. If the choice of a given δ0 renders Db-A* incomplete
on the graph GM,δ0 , we can always reduce δ, resulting in
a different graph, where the nodes in the solution are either
not pruned during the Db-A* search, or the graph becomes
unsolvable. Note that since decreasing δ may render the graph
unsolvable, this property is valuable in an asymptotic setting,
used to demonstrate asymptotic optimality when incrementally
adding more motion primitives.

C. Optimization

Assumption 2. (Convergence of the Optimizer) Let (Xd,Ud)
be a δ-discontinuity bounded solution (Definition 2) to the
planning problem. Then, there exists a (small) δ > 0 such
that trajectory optimization converges to a locally optimal so-
lution (X∗,U∗) of the original kinodynamic motion planning
problem (3).

Discussion: Nonlinear constrained optimization algorithms
for trajectory optimization have convergence guarantees to-
ward stationary points: these are either points that satisfy
the first-order optimality conditions—thereby converging to
a locally optimal feasible solution; or points that locally
minimize the constraint violation.

In general, these methods typically require the dynamics,
distance function, and collision constraints to have smoothness
or bounded derivatives. The exact conditions for convergence
can vary slightly among different trajectory optimization al-
gorithms, such as Differential Dynamic Programming [55],
Sequential Convex Optimization [56], the Augmented La-
grangian [57], and Interior Points [58].

Specifically, we assume that for a small δ, the initial guess is
close to a feasible solution, thereby ensuring that the optimizer
converges to a feasible and locally optimal solution. We argue
that this is a very reasonable assumption, especially when the
optimal solution is a δ-robust trajectory (Assumption 1), as
often assumed in the literature. The experimental success rate
of our planner (Section IX) also supports this assumption.

D. Motion Primitives

Our optimization-based approach for generating motion
primitives, as well as propagation of random control inputs
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from random starting points, creates a set of motion primitives
that asymptotically covers the state space, which will be
required to prove the asymptotic optimality of iDb-A*.

Definition 4. A set of primitives M covers the state space
with discontinuity ϵ > 0 if and only if, for all pairs of states
x,x′ ∈ X , there exists a ϵ-discontinuity bounded trajectory
from x to x′ (Definition 2) using the primitives m ∈ M.

Definition 5. A method to generate motion primitives asymp-
totically covers the state if, for every ϵ̃ > 0, there exists a finite
set of primitives M̃, |M̃| < ∞ such that Definition 4 holds.
In other words, asymptotic coverage means that if |M| → ∞,
then ϵ → 0 in Definition 4.

Remark 2. Motion primitives generated with our randomized
optimization-based approach, as well as rollouts of random
control inputs from random starting points, asymptotically
covers the state space.

E. iDb-A*

So far, we have demonstrated that there exists a small
discontinuity bound δ > 0 such that Db-A* finds an opti-
mal discontinuity bounded trajectory (if one exists), and that
trajectory optimization can be used to repair a δ-discontinuity
bounded solution into a locally optimal solution.

To prove asymptotic optimality for iDb-A*, we use tech-
niques from sampling-based motion planning to show that, as
we increase the number of primitives, the solution of Db-A*
converges towards an optimal discontinuity bounded solution
(and thus, after optimization, we converge towards the optimal
solution). In Algorithm 1, we iteratively reduce δ to achieve
good anytime behavior. For the proof, it is sufficient to assume
that we are using a small fixed discontinuity δ̃ > 0 such that
Theorem 2 and Assumption 2 hold.

Theorem 3. If the set of motion primitives asymptotically
optimally covers the state space with discontinuity δ̃, and
assuming convergence of the optimizer, iDb-A* (Algorithm 1)
is asymptotically optimal, i.e.,

lim
n→∞

P ({cn − c∗ > ϵ}) = 0, ∀ϵ > 0, (12)

where cn is the cost in iteration n and c∗ is the optimal cost.

Proof. We closely follow the proof strategy from previous
work in sampling-based motion planning [19, Th. 3]. Let
S1, . . . , Sn be random variables denoting the suboptimality
cn − c∗. In every iteration of Algorithm 1, we either reduce
the cost if we find a new solution or we remain at the same
cost, i.e., cn+1 ≤ cn. We now aim to show that, with sufficient
motion primitives, the solution of Db-A* will be close to the
true solution, and thus can be correctly optimized by trajectory
optimization. Crucially, in each iteration of iDb-A*, there is a
positive probability that the new primitives will improve the
solution, E[Sn|Sn−1] ≤ (1−ω)Sn−1, i.e., in expectation, the
solution improves by at least a constant amount ω > 0 every
iteration. This nonzero probability only holds if the motion

primitives asymptotically cover the entire state space with
discontinuity δ̃ (Definition 5). Then, we have

E[Sn] =

∫
E[Sn|Sn−1]P (Sn−1)dSn−1 (13)

≤ (1− ω)

∫
Sn−1P (Sn−1)dSn−1

= (1− ω)E[Sn−1] = (1− ω)n−1E[S1].

Applying the Markov inequality, we have P (Sn > ϵ) ≤
E[Sn]/ϵ = (1 − ω)n−1E[S1]/ϵ, which approaches 0 as n
approaches infinity.

It remains an open question what the theoretical conver-
gence rate of our proposed algorithm is, a property that is
known for some sampling-based planners [20]. Empirically,
we have shown that our initial solution is often much closer
to the optimum compared to our baselines, and that the region
of attraction for trajectory optimization is large enough to plan
with a few primitives and large discontinuity bounds.

IX. EXPERIMENTAL EVALUATION

We evaluate iDb-A* on 43 problems that include 8 different
dynamical systems in various environments. Most of the
problems and systems are selected from previous work in kin-
odynamic motion planning [1], [30], [59], [60]. Additionally,
we include several problems that require dynamic and agile
maneuvers with multirotors.

The benchmark problems are available in DynoBench, our
new benchmark library. It provides a C++ implementation of
all the dynamical systems (including dynamics with analytical
Jacobians, state, and bound constraints), collision and distance
computation with the Flexible Collision Library (FCL), the en-
vironments (in human-friendly YAML files), and visualization
tools in Python. In the trajectory optimization step, gradients
and Jacobians are computed analytically, except for the signed
distance function, for which we use finite differences.

Our implementation of iDb-A* and the other planners is
available in our repository, along with the motion primitives
and instructions to replicate the benchmark results. A vi-
sualization of each problem and the corresponding solution
trajectories computed by our algorithm is available on our
website.

A. Dynamical Systems and Environments

We include a diverse range of dynamical systems and
environments, featuring varying state dimensionality (from 3
to 14), number of underactuated degrees of freedom, and
controllability.

1) Unicycle 1 (1st order) has a 3-dimensional state space
[x, y, θ] ∈ X ⊂ R2 × SO(2) and a 2-dimensional
velocity control [v, ω] ∈ U ⊂ R2 [61]. The three variants
(v0, v1, v2) use different control bounds. See Figs. 1a
and 4e.

2) Unicycle 2 (2nd order) has a 5-dimensional state space
[x, y, θ, v, ω] ∈ X ⊂ R4 × SO(2) and a 2-dimensional
acceleration control [v̇, ω̇] ∈ U ⊂ R2 [61]. See Fig. 5.
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(a) (b) (c) (d) (e)

Fig. 4. Kinodynamic motion planning problems: Start and goal positions are represented in green and red, respectively. Obstacles are depicted in gray.
Trajectories computed by iDb-A* are illustrated in blue. (a) Quadrotor v1 – Window, (b) Acrobot – Swing up obstacles v1, (c) Planar rotor – Hole, (d) Rotor
pole – Small window, (e) Unicycle 1 v0 – Park.

3) Car with trailer has a 4-dimensional state space
[x, y, θ0, θ1] ∈ X ⊂ R2 × SO(2)2 and a 2-dimensional
control space [v, ϕ] ∈ U ⊂ R2 (steering angle and
velocity) [61]. See Fig. 1b.

4) Acrobot is a two-link planar manipulator actuated only
at the middle joint [62]. It requires long trajectories to
swing up the two links. See Fig. 4b.

5) Quadrotor v0 has a 13-dimensional state space (po-
sition, orientation, and first-order derivatives) and a 4-
dimensional control space (force for each of the four
motors). Dynamics are defined in Example 2, and we use
the parameters of the Crazyflie 2.1. The low thrust-to-
weight ratio of 1.3 is very challenging for kinodynamic
motion planning, and harsh initial conditions prevent the
use of specialized methods [63], [64]. See Fig. 1d.

6) Quadrotor v1. The state space is the same as in Quadro-
tor v0. Controls are the total thrust and torques in the
body frame, which make sampling-based methods more
efficient but approximate real rotor-force limits. We use
the system parameters and model from the OMPL APP
repository, but increase the control bounds to perform
agile maneuvers. See Fig. 4a.

7) Planar rotor. The input is the force in each rotor u =
[f1, f2] ∈ R2 and the state space is 6-dimensional x =
[x, z, θ, vx, vy, w] ∈ R5 × SO(2). The thrust-to-weight
ratio is also limited to 1.3. See Fig. 4c.

8) Rotor pole (Planar multirotor with pole) is a planar
multirotor with an additional underactuated pendulum.
The control space is the same as in Planar rotor (but
with larger control bounds) and the state space has two
additional degrees of freedom [q, q̇] for the pendulum.
See Fig. 4d.

All systems use the explicit Euler integration (2), with ∆t =
0.1 s for all car-like robots, and ∆t = 0.01 s for the flying
robots and the Acrobot, due to the fast rotational dynamics.

For most car-like robots, we consider three environments
(Kink, Park, Bugtrap). For the Acrobot and multirotors, we
use environments with and without obstacles to evaluate
performance in settings that require both aggressive maneuvers
(e.g., recovering from upside-down positions) and navigation
around obstacles.

B. Algorithms

Following our previous work [11], the goal of this bench-
mark is to compare methods for kinodynamic motion planning
that use different methodologies: search, optimization, and
sampling. We compare our algorithm against state-of-the-art
methods that have available open-source implementations.

For a search-based approach, we rely on SBPL (Search-
based Planning Library), a commonly used C++ library. We
generate our own primitives and make minor adjustments to
the heuristic to enable time-optimal anytime planning using the
provided implementation of ARA* in SBPL. SBPL requires
the motion primitives to be connected without discontinuity
and to span a lattice. We limit our evaluation to dynamic
models that are readily available in SBPL, namely the Unicycle
1 v0.

For a sampling-based approach, we use SST* [1], which is
implemented in OMPL [65] (Open Motion Planning Library).
Since sampling-based kinodynamic approaches cannot reach
a goal state exactly, we use a goal region instead and run
subsequent trajectory optimization with fixed terminal time
to generate an exact solution to the goal. The reported time
does not include the time spent in trajectory optimization, thus
providing a favorable lower bound.

For optimization-based planning, we choose a classic
combination of a geometric motion planner and a trajec-
tory optimizer, which we call RRT∗-TO in the following.
The motion planner generates an obstacle-free initial guess,
ignoring the dynamics of the system, i.e., planning with a
simplified model, and the optimizer uses this trajectory as an
initial guess. As a motion planner, we use geometric RRT*
(using the implementation in OMPL), which provides anytime
behavior by incrementally improving the geometric trajectory.
Importantly, the probability of finding a feasible solution with
optimization might increase when using the multiple geometric
initial guesses provided by RRT*. The initial guess provided
by the geometric planner is collision-free but is often not
accurate for dynamic constraints. Therefore, for trajectory
optimization with free terminal time, we use a hierarchical
strategy, where we solve a sequence of optimization problems
with fixed terminal time, increasing the terminal time (Eq.
(14) in Section A of the appendix). This approach is more
robust and provides better success in this planner than the
joint optimization of trajectory and time, which is used in
iDb-A∗ .
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For iDb-A*, we implement Algorithm 1 and Algorithm 2
in C++. As a heuristic h, we use the Euclidean-based heuristic
(e.g., distance divided by the upper bound of the speed, see
Section V-B), because it is general, fast to compute, and does
not require precomputation. For trajectory optimization, we
perform joint optimization of trajectory and time (Section VI),
which provides a good balance between local optimality,
convergence, and computational time when using a good initial
guess, as usually provided by Db-A*.

We provide an ablation study of the choices of heuristic
and trajectory optimization strategy in Section IX-E, where
we analyze and compare different alternatives.

The rates that control the number of primitives and the
discontinuity bound in each iteration of iDb-A∗ (Algorithm 1)
are set to nr = 1.5, δr = 0.9 in all problems. However,
when the search terminates without finding a solution, we keep
the discontinuity bound (almost) constant with δr = 0.999
and only increment the number of primitives with a rate of
nr = 1.5. The parameter α in Algorithm 2 is set to 0.5. The
initial number of motion primitives, discontinuity bound, and
hyperparameters of the trajectory optimization are chosen per
dynamical system. For example, in all problem instances with
Unicycle 1 v0, we start with 100 primitives and a discontinuity
δ0 = 0.3, and in all instances with Quadrotor v0, we start
with 2000 primitives and δ0 = 0.7. The distance function d
used to measure the distance between states in Db-A∗ is a
weighted Euclidean norm, which uses different weights for
the position, orientation, and velocity components of the state
(e.g., in the Unicycle 1 we use weights 1 and 0.5. Thus, a δ of
0.3 could represent up to 30 cm of discontinuity in position or
0.6 rad in orientation. Such discontinuities are large enough
that the trajectory is not directly applicable to the real robot,
but enables a fast search and can be efficiently repaired in the
nonlinear trajectory optimization step of iDb-A∗ .

The offline generation of a valid primitive takes a few
seconds, from 0.1 s for the Unicycle 1 v0 to 6 s for a Quadrotor
v0 using a single core of a laptop computer with a CPU i7-
1165G7@2.80GHz, where most of the time is spent attempting
to solve random two-value boundary problems, which cannot
be solved with short trajectories.

The benchmarking infrastructure is written in Python, and
all tuning parameters for our algorithms and baselines can be
found in our open-source repository.

For nearest-neighbors computation in iDb-A∗ , SST∗ , and
RRT∗-TO , we use NIGH [66] in single-core mode, which
provides faster lookup and insertion times than the default
Geometric Near-neighbor Access Tree (GNAT) implemen-
tation in OMPL. All trajectory optimization algorithms are
implemented based on the DDP solver in Crocoddyl [26].

C. Metrics

In the following, we report the metrics:
1) Success Rate (p): The ratio of trials where a solution

was found within the planning budget of 120 s.
2) Median time required to find a solution (tst).
3) Median cost when 50% of the trials have found a

solution (J st).

iDb-A∗ (J=25.9 s) SST∗ (J=75 s) RRT∗-TO (J=30.9 s)

Fig. 5. Example of the first trajectory computed by iDb-A∗ , SST∗ ,
and RRT∗-TO in Unicycle 2 – Bugtrap. The orange line in iDb-A∗ and
RRT∗-TO shows the initial guess trajectory before optimization. The first
solution of iDb-A∗ has the lowest cost (J). The average computational time
to get the first solution is 1.2 s in iDb-A∗ , 2.8 s in RRT∗-TO , and 0.9 s in
SST∗ .

4) Median cost of the final solution (J f) found within the
planning budget of 120 s.

D. Benchmark

We conducted our benchmark on a workstation with a CPU
AMD EPYC 7502 32-Core Processor @2.50 GHz. All planners use
a single core. Each planner was run 20 times on each problem,
each time with a different random seed.

Our results are summarized in Table I, where we provide a
selection of 16 problems (two for each dynamical system). We
also show convergence plots with median and 95% confidence
intervals for three representative problems in Fig. 6. The
complete results are available on our project webpage.

We summarize the main results as follows:
• SBPL has been excluded from the table because it is only

readily applicable to the three problems that use Unicycle 1 v0.
In this setting, it consistently finds a solution in competitive
time: 2.1 s in Bugtrap, 0.2 s in Kink, and 0.1 s in Park.

However, due to the limited number of lattice-based prim-
itives, the initial and final costs are rather constant: 36.6 in
Bugtrap, 22.6 in Kink, and 6.2 in Park (and higher than the
costs achieved by iDb-A∗ ).
• SST∗ can find an initial solution quickly in problems with

car-like dynamics; however, the quality of the initial solution
is poor, especially in the larger, higher-dimensional systems.
The convergence is slow—our 120 s timeout was not sufficient
for SST∗ to fully converge in most cases. Notably, in problems
involving multirotors, it was unable to find solutions within the
time limit for most problems (for instance, we observed a 0%
success rate in the dynamics of Quadrotor v0 and 10% with
Quadrotor v1). Because SST∗ relies on propagating random
control inputs, it is very inefficient for multirotor systems,
where random inputs quickly bring the system into unsta-
ble configurations. However, in low-dimensional and stable
dynamical systems like cars and unicycles, it finds the first
solution faster but is clearly outperformed in terms of the cost
of initial and final solutions by both iDb-A∗ and RRT∗-TO .
• RRT∗-TO can find near-optimal initial solutions in some

problems but fails if the geometric initial guess is not close
to dynamically feasible motion, which occurs more often in
environments with flying robots. Thus, the main drawback
is that this approach is incomplete, with success rates below
70% on several problems and complete failures in others. The
cost at convergence is often worse than that of iDb-A∗ . In
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TABLE I
BENCHMARK WITH SELECTED PROBLEMS. BOLD INDICATES THE BEST RESULT.

iDb-A* SST* RRT*+TO

# System Instance p tst[s] J st[s] J f[s] p tst[s] J st[s] J f[s] p tst[s] J st[s] J f[s]

0 Acrobot Swing up 1.0 1.3 5.2 4.9 0.6 16.4 5.3 4.6 0.6 2.0 8.1 4.0
1 Acrobot Swing up obstacles v1 1.0 1.7 6.4 5.1 0.4 - - - 0.9 1.7 6.1 3.9
2 Car with trailer Kink 1.0 1.6 26.9 24.4 1.0 0.6 75.8 63.1 1.0 2.0 44.8 18.1
3 Car with trailer Park 1.0 0.4 19.7 4.6 0.7 1.6 18.4 9.9 0.8 0.2 5.7 5.3
4 Planar rotor Hole 0.7 34.2 3.8 3.8 0.9 39.8 13.5 8.0 1.0 1.1 8.1 3.4
5 Planar rotor Bugtrap 1.0 12.3 5.5 5.2 1.0 26.4 13.6 8.6 1.0 1.9 11.6 8.1
6 Rotor pole Swing up obstacles 1.0 2.1 4.0 3.9 0.0 - - - 0.8 19.8 5.6 4.1
7 Rotor pole Small window 1.0 3.2 4.5 4.5 0.0 - - - 0.5 - - -
8 Quadrotor v0 Recovery 1.0 0.9 6.2 2.6 0.0 - - - 0.0 - - -
9 Quadrotor v0 Recovery obstacles 1.0 1.5 5.3 3.6 0.0 - - - 0.9 8.8 6.9 3.6
10 Quadrotor v1 Obstacle 1.0 1.2 2.7 2.4 0.2 - - - 1.0 1.5 4.4 3.5
11 Quadrotor v1 Window 1.0 1.7 2.6 2.2 0.3 - - - 0.8 21.1 7.4 3.7
12 Unicycle 1 v0 Bugtrap 1.0 0.5 22.3 21.0 1.0 0.1 70.5 23.8 1.0 1.2 45.1 23.8
13 Unicycle 1 v2 Wall 1.0 0.8 20.8 18.4 1.0 0.1 49.7 19.2 0.1 - - -
14 Unicycle 2 Bugtrap 1.0 1.2 25.2 25.0 1.0 0.9 98.2 49.4 1.0 2.8 44.5 28.9
15 Unicycle 2 Park 1.0 0.1 5.8 5.8 1.0 0.2 29.2 5.9 0.9 0.1 6.0 5.8
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Fig. 6. Success and cost convergence plots for three representative systems. Cost is only plotted when 50% of the runs have found a solution. The shaded
region indicates the 95% non-parametric confidence interval for the median.

general, we conclude that RRT∗-TO is a good method when
the simplified model is informative and when the primary
challenge is obstacle avoidance. In these settings, it often
matches the time to first solution of iDb-A∗ .

• iDb-A∗ finds the highest-quality first solution in 14 out of
16 selected problems (better in the J st column), converged to
the lowest-cost solution in 12 out of 16 problems (column J f),
and achieved a 100% success rate in 15 out of 16 problems
(column p) (and 41 out of 43 total problems). The time to
generate the first solution (column tst) is competitive with the
other approaches in the problems solved by all methods, while
it is the only method that consistently solves all problems with
multirotor flying robots.

We can conclude that our method performs well across
all systems and environments, from navigation among ob-
stacles with car models to recovery flights with control-
limited quadrotors. Note that the performance we report here
is considerably better than our previous results [11]. This
improvement is due to an improved implementation of the
search algorithm, a superior trajectory optimization algorithm
and formulation, and a better strategy for choosing the number
of primitives and the discontinuity bound.

Fig. 5 shows the different first solutions found by iDb-A∗ ,
RRT∗-TO , and SST∗ in the Unicycle 2 – Bugtrap problem.

We also display the convergence and success plots for some
instructive problems in Fig. 6:

1) Rotor pole – Swing up obstacles: This problem in-
volves swinging the pole upwards while avoiding ob-
stacles (Fig. 1c). Only iDb-A∗ consistently solves the
problem within a competitive timeframe. On average,
RRT∗-TO requires 10x more computational time to find
a solution and does not achieve a 100% success rate. The
disparate performance across runs of RRT∗-TO stems
from the uninformative geometric guess, which often
leads to failure in the subsequent optimization and thus
requires multiple trials with different initial guesses.
SST∗ does not find any solution within the computa-
tional budget.

2) Quadrotor v1 – Window: In this problem, the quadro-
tor needs to find a path through a window; see
Fig. 4a. SST∗ achieves a low success rate because
propagating random controls is often inefficient, with
a low probability of generating useful trajectories.
iDb-A∗ consistently solves the problem in at most two
seconds and improves the solution with more compute
time. RRT∗-TO fails to find a solution in some runs and
the median cost is considerably higher.

3) Unicycle 1 v0 – Bugtrap: The Bugtrap environment
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is shown in Fig. 5, but here we use the Unicycle 1
v0 system instead of Unicycle 2. SST∗ finds the first
solution the fastest, but convergence to the optimum is
slow. iDb-A∗ is also quick and produces a high-quality
solution already in the first iteration. RRT∗-TOfinds
solutions as well but often requires multiple optimization
trials to obtain the first valid solution (similar to the
previous problems, RRT∗-TO has a high variance in the
time required to solve the problem). Regarding SBPL,
the time to reach the first solution is competitive with
the other methods, but due to the limited number of
primitives, the solution does not improve.

E. Ablation Studies of iDb-A*

We analyze the main algorithmic components of iDb-A∗ to
study the impact on the overall performance and to justify the
most important design decisions, namely:

– Scheduling for increasing/decreasing the number of prim-
itives and the discontinuity bound.

– Euclidean heuristic in the search step.
– Joint Optimization of trajectory and free terminal time.
– Optimization-based motion primitives.
– Invariance/equivariance of motion primitives.
– Underlying algorithm for trajectory optimization.
We find a significant interaction between hyperparameters

and design decisions, making it challenging to evaluate the
impact of each component. For instance, the runtime of the
search step with different heuristics is strongly dependent
on the number of primitives. Therefore, instead of including
more variations of iDb-A∗ in our benchmark, we choose to
analyze and discuss each component individually, which we
believe provides a clearer understanding. The experiments in
the ablation study are conducted on a modern laptop computer
with a CPU i7-1165G7@2.80GHz (single core), which has
single-core performance similar to that of the workstation
used.

1) Time Spent in Each Component: We first evaluate how
much computational time is spent in the search or optimiza-
tion components, and how this varies when we decrease the
discontinuity bound and increase the number of primitives.

Fig. 7 shows an analysis of the computation time spent
in the search and optimization during the first iteration of
iDb-A∗ for three different systems (Unicycle 1 v0, Unicycle
2, and Planar rotor), using two different values of the discon-
tinuity bound (with a consistent number of motion primitives),
in the Bugtrap environment (e.g., Fig. 5).

The total time is predominantly occupied by the search
component, where both collision checks and nearest-neighbor
queries consume a significant fraction of the computational
time. When comparing different values of discontinuity bounds
(e.g., u1-0.3 versus u1-0.2), we observe that the search is
quicker with a larger discontinuity (and a consistently small
number of primitives) because it results in a smaller branching
factor and fewer states to expand. The computational time of
the optimization component remains roughly constant, even
when smaller discontinuity bounds provide a better initial
guess.
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Fig. 7. Time spent in the search and optimization steps during the first iter-
ation of iDb-A∗ in the Bugtrap environment, with three different dynamical
systems and two different discontinuity bounds. The labels u1, u2, and r2
are short names for the systems Unicycle 1 v0, Unicycle 2, and Planar rotor.
The number after the hyphen indicates the discontinuity bound; for example,
u1-0.3 is Unicycle 1 v0 with δ = 0.3.

Comparing across systems (e.g., u1-0.3 versus r2-0.5), the
time spent in the search increases with the dimensionality of
the system’s state space, in line with the theoretical exponen-
tial complexity. The optimization time also increases, but it
remains a minor fraction of the total time.

This analysis offers valuable insights for selecting the initial
discontinuity bound and the number of primitives in iDb-A∗ .
Ideally, the initial number of primitives and the discontinuity
bounds should be chosen to be small (primitives) and large
(discontinuity) so that 1) the search finds a discontinuous
solution quickly, and 2) the optimizer finds a feasible so-
lution. Thus, our recommendation is to “choose the largest
discontinuity bound that the trajectory optimization can handle
effectively”. To choose the initial number of primitives, given
a set of test environments, we recommend starting with a
small number of primitives and increasing it until a first
valid solution is found in the first iteration of iDb-A* for the
easy environments, and after two or three iterations in harder
instances—resulting in very competitive anytime behavior.

2) Analysis of Trajectory Optimization with Free Terminal
Time: We evaluate our approach for the optimization of trajec-
tories with free terminal time: joint optimization of trajectory
and terminal time (Free-dt) against three alternative methods
described in Section A in the appendix: (i) hierarchical time
search (Search-T), (ii) model predictive control (MPC), and
(iii) model predictive contouring control (MPCC).

We analyze the computational speed, the success, and the
cost value in a set of initial guesses of different discontinuities
for some representative problems with different dynamical
systems. A summary of the results is shown in Fig. 8 (more
extensive results are available on the project webpage).

First, we note that the results highlight a strong variation
across the dynamical systems, scenarios, and initial guesses.
We can draw the following general conclusions:

1) Robustness: Free-dt and Search-T are more robust and
are able to successfully optimize more initial guesses
than MPC and MPCC. On the contrary, MPC and MPCC
are harder to tune and sometimes fail, especially for
larger values of the discontinuity bound. The sliding
window approaches repair the trajectory locally, step
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each initial guess. A bar reaching the top of the plot indicates the algorithm’s
failure to find a solution.

by step, and often cannot reach the final goal if doing
so requires jointly improving the initial guess trajectory
(where we need to propagate information about the goal
across the entire trajectory).

2) Computation speed: When MPC and MPCC manage to
find a solution, they are the fastest methods. Comparing
Free-dt and Search-T, Free-dt is between 1.5 and 5 times
faster than Search-T.

3) Cost convergence: The joint approaches Free-dt and
Search-T converge to a better cost than the sliding win-
dow approaches because they consider the full trajectory
at once, but the difference is small.

It is worth noting that compute times for the same problem
with different discontinuity bounds are not directly comparable
since the initial guesses contain a varying number of steps.
Furthermore, these results heavily depend on the underlying
optimization algorithm (differential dynamic programming),
which effectively addresses the temporal dimension of the
trajectory optimization problem (with linear complexity on the
number of time steps).

In iDb-A∗ , the search component consumes more com-
putational time than the optimization process, as illustrated
in Fig. 7. In trajectory optimization, we prioritize achieving
reliable results and converging to low-cost solutions over
computational efficiency. Consequently, Free-dt has been se-
lected as the default optimization algorithm for iDb-A∗ ,
striking an optimal balance between convergence, robustness,
and computational speed.

3) Analysis of Heuristic Functions: We analyze three dif-
ferent heuristic functions to inform the search in Db-A∗ :
the Euclidean heuristic (Euclidean), the roadmap heuristic
(Roadmap), and the blind heuristic (Blind) (see Section V).
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Planar rotor – Bugtrap (r2-bug), Quadrotor v0 – Obstacle (q-obs), Quadrotor
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The number of expansions is measured in thousands of units; for example, a
value of 100 on the graph represents 100,000 expansions. A bar reaching the
top of the plot indicates the algorithm’s failure to find a solution.

We report the number of expanded nodes and the compu-
tational time for a single search of Db-A∗ on six different
problems involving obstacles in Fig. 9 (with more extensive
results on our webpage). We first note that the comparison
is highly dependent on the number of motion primitives
and the discontinuity bound. For a large discontinuity bound
and a small number of primitives, the search’s branching
factor is small, and the heuristic is relatively irrelevant; even
uninformed exploration can find the goal with few expansions.
With an increased number of primitives, the potential states to
expand grow, necessitating a good heuristic function.

To better illustrate the differences between heuristics, we
evaluate Db-A∗ with smaller discontinuity values (and corre-
spondingly higher numbers of primitives) than those used in
the first iteration of iDb-A∗ in the main benchmark, resulting
in many more expansions and computational time.

The Roadmap heuristic does not include precomputation
time, which requires building a coarse roadmap and comput-
ing the optimal cost-to-go for all nodes. This process takes
approximately 50ms for the unicycles, 70ms for the Planar
rotor (with roadmaps of 1,000 configurations), and 400ms for
the Quadrotor v0 (with a roadmap of 3,000 configurations).

We observe that the Roadmap heuristic is the most infor-
mative (as it considers obstacles) and reduces the number of
expanded nodes in all selected problems. However, in some
cases, the Euclidean heuristic is competitive in terms of com-
pute time (and even faster for some problems), as it is quicker
to evaluate because the Roadmap requires a k-d tree search
with every evaluation. The Blind heuristic fails to solve some
problems within the time limit of 30 s. Based on these results,
in our algorithm, we select the Euclidean heuristic because
it requires no precomputation or additional hyperparameters,
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and it is informative and rapid for all dynamical systems.
4) Motion Primitives - Optimization vs. Sampling: We also

evaluated the performance of iDb-A∗ using motion primitives
with random controls (i.e., short trajectories generated by
sampling controls uniformly at random within bounds), as
opposed to our optimization-based motion primitives.

For car-like robots, the success, convergence, and compu-
tation time of iDb-A∗ are similar with both strategies. The
cost of the discontinuity-bounded trajectories produced in the
search step using primitives with random controls is often
higher, but the optimization step successfully improves these
trajectories, achieving a similar cost in the final feasible trajec-
tory. Conversely, motion primitives with random controls often
fail to solve problems with flying robots, where such primitives
frequently result in unstable final intermediate configurations
and erratic trajectories (as exemplified by the performance of
SST∗ with flying robots in the benchmark).

5) Motion Primitives – Invariance and Equivariance: All
systems, except for the Acrobot, exhibit a form of invariance
or equivariance. Using invariance, the same primitive can be
transformed on-the-fly (e.g., translated) to be applicable in dif-
ferent states with smaller discontinuity values (Section V-D).
For car-like robots, we leverage only translation invariance
(Example 4). For flying robots, we utilize translation and linear
velocity invariance in the second-order dynamics (Example 5).
Since the number of motion primitives required to attain
a given coverage resolution grows exponentially with each
dimension, exploiting invariance is crucial for planning with
a reduced number of primitives. For instance, we use only
2,000 primitives for the Quadrotor v0 in the first iteration of
iDb-A∗ by utilizing translation and velocity invariance. With
only translation invariance, over 50,000 primitives would be
required to achieve comparable levels of discontinuity.

6) Choice of the Underlying Algorithm for Trajectory Opti-
mization: Given the central role of the optimization algorithm
in our algorithm and baselines, we re-ran the complete bench-
mark (iDb-A∗ , RRT∗-TO , SST∗ ) with a different underlying
trajectory optimization algorithm based on a multiple shooting
formulation and sequential quadratic programming [54].

Due to space limitations, the results can be found on
our website, with the main conclusions presented here. For
iDb-A∗ , we observe no significant differences between
the two optimization methods, especially since the initial
guesses are often very informative (collision-free, low dy-
namics violation, and close to reaching the goal). For the
RRT∗-TO baseline, multiple shooting performs better in some
problems but worse in others, solving 36 with multiple shoot-
ing and SQP and 39 problems with differential dynamic
programming (with success rate of at least 50%). We conclude
that iDb-A∗ significantly outperforms the baselines in both
cases, independent of the optimization algorithm. Using our
code, users can switch between algorithms with a simple flag,
allowing for easy comparison and experimentation.

F. Limitations and Future Work

From a practical standpoint, the main limitation of
iDb-A∗ is that it necessitates a preliminary offline step to

generate motion primitives. Moreover, adding a new dynamical
system requires solid theoretical and practical knowledge
of two different paradigms in motion planning: search and
trajectory optimization, and the interplay between them to
choose some important hyperparameters. In this sense, the
method is more complex than sample-based motion planners.

The number of required motion primitives grows expo-
nentially with the state dimension. To mitigate this issue, a
possible solution is to use a more informative distance metric
(instead of the weighted Euclidean metric) when deciding
which primitive to apply, which correlates better with the un-
derlying dynamics and the subsequent trajectory optimization.
Additionally, more informed sampling strategies for start and
goal configurations when generating motion primitives could
reduce the number of primitives needed.

To improve the computation time required to find the first
solution in some problems (e.g., 1.5 s in Quadrotor v0 -
Recovery obstacles or 12.3 s in Planar rotor - Bugtrap) and
scale to larger environments with more obstacles, we see great
potential in combining our discontinuity-based approach with
an RRT-like planner, instead of an incremental A* search. We
are also interested in exploring hybrid approaches between our
method and the control propagation used in [30].

a) Scalability to Higher-Dimensional Systems: Scalabil-
ity to higher dimensions is a significant challenge for kinody-
namic motion planners. Our benchmark has evaluated a wide
range of dynamical systems used in previous general-purpose
state-of-the-art kinodynamic motion planners [30], [1].

To scale to higher dimensions, e.g., a quadruped robot
or a humanoid robot, we conjecture that we need to tailor
some parts of our framework to be system-specific. This
can be achieved by using a more informed and user-defined
distribution of motion primitives (instead of locally optimal
trajectories between states chosen uniformly at random), a
more informative distance metric (instead of weighted Eu-
clidean), and learning techniques to adapt motion primitives
online to match a given state (instead of only concatenating
the primitives together).

X. CONCLUSION

We present iDb-A*, a new kinodynamic motion planner
that combines a novel graph-search method with trajectory
optimization iteratively. For the graph search, we introduce
Db-A*, a generalization of A* that reuses motion primitives
to compute trajectories with bounded discontinuity, which are
later used as a warm start for trajectory optimization.

iDb-A* amalgamates the ideas and advantages of sampling-
based, search-based, and optimization-based kinodynamic mo-
tion planners: it converges asymptotically to the optimal solu-
tion, rapidly finds a near-optimal solution, and does not require
any additional post-processing.

We evaluate iDb-A* on a diverse set of challenging, time-
optimal kinodynamic motion planning problems, from obstacle
avoidance with car-like robots to highly dynamic maneuvers
with quadcopters. iDb-A* consistently outperforms other al-
gorithms on these benchmarks and solves problems that were
beyond the capabilities of previous motion planners.
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The main limitation is that the number of motion primitives
required grows exponentially with the state dimension, which
poses a challenge to systems with higher dimensionality.

Finally, we believe that our combination of search, sam-
pling, and optimization lays the foundation for novel kinody-
namic planners for robotic manipulation and contact planning.
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APPENDIX A
ALTERNATIVE METHODS FOR TRAJECTORY OPTIMIZATION

WITH FREE TERMINAL TIME

In this section, we discuss the three alternative methods for
the trajectory optimization step of iDb-A*, in addition to the
proposed ‘joint optimization of trajectory and terminal time‘.
All methods have been analyzed in the ablation study.

1) Hierarchical Time Search (Search-T): A hierarchical
approach that combines a linear search on the terminal time
with trajectory optimization with a fixed terminal time. Given
the time bounds {Tmin, Tmax} and a time resolution h, we
define a set of candidate times T = {Tmin, Tmin+h, . . . , Tmax},
and solve the hierarchical optimization problem:

min
Ti∈T

Trajectory Optimization(Ti), (14)

where Trajectory Optimization(Ti) first rescales temporally
the initial guess to have a time duration of Ti (the time step
size ∆t is kept constant, but the number of time steps of the
trajectory varies) and then solves (3) with a fixed number of
time steps Ki and fixed ∆t. For time-optimal trajectories,
we start the search at Tmin, and stop at the first Ti when
Trajectory Optimization(Ti) is feasible. Based on the duration
T0 of the initial guess, a reasonable choice of the parameters
is, e.g., Tmin = 0.5T0, Tmax = 2T0, and h = (Tmax −Tmin)/10.

A. Sliding Window Optimization

Instead of considering the full trajectory at once, the opti-
mization step can try to repair the discontinuities locally. While
this approach is more constrained to follow the initial guess,
it is also potentially faster. Solving a sequence of smaller
subproblems often reduces the computational cost and number
of nonlinear iterations, which typically increase for longer
trajectories.

The following two approaches are inspired by two optimal
control formulations, namely Model Predictive Control (MPC)
and Model Predictive Contouring Control (MPCC) [67]. In
both approaches, we repair the initial guess trajectory in a
sequence of steps, starting from the beginning of the initial

guess. At each step, we (i) optimize the sequence of states
and controls inside a small optimization window of length Wo

(e.g., 50 steps), (ii) fix the first Ws ≤ Wo states and controls
(e.g., 10 steps), and (iii) move the optimization window by Ws,
so that the new start state is the last fixed state. The time step
duration ∆t is fixed, but the resulting final trajectory might
have a different duration than the initial guess from Db-A*.

a) Subgoal Following (MPC): The optimization problem
in each step is:

min
XW ,UW

k1d(xW ,g)2 +∆t
∑
w

j(xw,uw) , (15a)

s.t. Constraints (3b), (3c), and (3d). (15b)

Here, XW ,UW are the sequence of states and controls in
the optimization window, xW is the last state of the current
window, and g is the subgoal state for this optimization
window, chosen from the Db-A* initial guess to encourage
making progress in the path. The weight k1 > 0 combines the
objective of minimizing the distance to the subgoal d(xW ,g)
with the original control cost function.

b) Path Following (MPCC): The optimization problem
in each step is:

min
XW ,UW ,α

− k1α+ k2d(xW , π(α))2+

∆t
∑
w

j(xw,uw) , (16a)

s.t. 0 ≤ α ≤ 1 , (16b)
Constraints (3b), (3c), and (3d). (16c)

The function π(·) : [0, 1] → X is a smooth parameterization of
the initial guess (e.g., a spline through the waypoints), and the
scalar variable α indicates the progress on the path. The term
k1α, with k1 > 0, tries to maximize the progress along the
path. The term k2d(xW , π(α))2, with k2 > 0, minimizes the
distance between the last state in the window and the progress
on the path. Together, these two terms push the last state xW

to make progress along the path while following it closely
(note that, compared to other MPCC formulations, we only
apply the contouring cost to the last state in the window).
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