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Abstract— Solving a Task-and-Motion Planning (TAMP)
problem can be represented as a sequential (meta-) decision
process, where early decisions concern the skeleton (sequence
of logic actions) and later decisions concern what to compute
for such skeletons (e.g., action parameters, bounds, RRT paths,
or full optimal manipulation trajectories). We consider the
general problem of how to schedule compute effort in such
hierarchical solution processes. More specifically, we introduce
infinite completion trees as a problem formalization, where
before we can expand or evaluate a node, we have to solve
a preemptible computational sub-problem of a priori unknown
compute effort. Infinite branchings represent an infinite choice
of random initializations of computational sub-problems. Deci-
sion making in such trees means to decide on where to invest
compute or where to widen a branch. We propose a heuristic to
balance branching width and compute depth using polynomial
level sets. We show completeness of the resulting solver and
that a round robin baseline strategy used previously for TAMP
becomes a special case. Experiments confirm the robustness
and efficiency of the method on problems including stochastic
bandits and a suite of TAMP problems, and compare our
approach to a round robin baseline. An appendix comparing the
framework to bandit methods and proposing a corresponding
tree policy version is found on the supplementary webpage1.

I. INTRODUCTION

When designing robotics planning algorithms we are often
faced with decisions as follows: Should the algorithm try to
directly use path optimization to find a feasible path, or a
sampling-based path finder? When a path planner did not
find a path after a second, should it give up and instead try
to solve for a completely different action sequence? When
the algorithm already sampled five different feasible grasp
poses (using a constraint solver) but for none of these a
consistent approach path was found, should it try a sixth
pose (with a new random seed) or instead try an alternative
action sequence?

Our view is that decisions as these should be made by the
algorithm itself, rather than hard-coded in the algorithm’s de-
sign. In this paper, we provide a general problem formulation
to address such meta decision making, essentially enabling
a search over alternative compute paths to a solution.

More specifically, we consider problems where finding an
overall solution requires to solve a sequence of sub-problems,
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akin to “assembling a solution” in several steps. Sub-problem
solvers are assumed to be preemptible, i.e., their computation
can be paused to reallocate compute effort at alternative
places. The possible sequences of sub-problems form a
decision tree. Nodes in this tree represent sub-problems, and
we can expand a node only when it is complete, i.e., after
its sub-problem is solved. Further, a node may have infinite
potential children, namely to enumerate random seeds of
sub-solvers and thereby ensuring probabilistic completeness
of the overall solver. We call the resulting decision tree
an infinite completion tree. A solver needs to incrementally
forward search the tree in order to find a solution while
minimizing the expected compute effort. To this end, it needs
to decide where to invest compute effort by preempting
sub-solvers and reassigning compute effort to other sub-
problems, or by considering alternative compute paths.

In this setting we propose Effort Level Search (ELS),
which balances allocation of compute effort in completion
trees with infinite branching. The proposed heuristic defines
level sets polynomial in (compute) depth and (branching)
width. Our contributions include:

1) The introduction of completion trees as a novel prob-
lem formulation for sequential computational solvers
that preemptively assign compute efforts to sub-
problems, which also generalizes previous effortful
bandit formulations.

2) Effort Level Search (ELS) to balance search depth and
width in such trees, guaranteeing completeness, with
Round Robin as special case.

3) A tree policy variant of Effort Level Search that
generalizes UCT (Upper Confidence applied to Trees)
and can address effort bandit settings.

We evaluate ELS on analytic problems that test for robust-
ness, as well as a suite of 8 robotic TAMP problems.

II. RELATED WORK

A. Classical Search & Meta-Reasoning
In our problem formulation we need to reason over infinite

branching and decisions on investing compute effort. Partial
Expansion A∗ [3], [6] can handle problems with an infinite
branching factor. However, these do not consider the effort
of evaluating nodes. Lazy Receding Horizon A∗ manages to
search in graphs with expensive edge evaluations [9]. Each
edge evaluation can be viewed as a sub-problem to be solved,
but this algorithm assumes the structure of the graph (without
edge costs) is known and interrupting completion of an edge
(or conversely, deciding on which sub-problem to resume
investing compute) is not considered.
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Generally, such decision problems are related to rational
meta-reasoning [12], which has been used before in heuristic
search [8], [10], [13]. However, these algorithms assume the
search tree is finite.

B. Bandits with Compute Costs and Interrupts

There are several problem formulations that combine
bandits with compute efforts or resource limits. Bandits with
knapsacks [1], [16] assumes that each query of a bandit
consumes resources on which arbitrary constraints can be
formulated. The decision strategies roughly follow the idea of
“bang for buck”, i.e., based on expected return per expected
effort. Unlike in our formulation, whenever a decision is
made, the full resources are immediately consumed and a
return received – there is no notion of interrupting compute
or completion.

In contrast, [2] considers a problem formulation more
closely related to ours, where whenever a bandit is queried
anew (in other words, a new task of type k spawned), a latent
compute cost and return is sampled. The decision maker can
at any time interrupt a bandit query (task computation) and
decide to continue with another. This formulation introduces
the notion of an incomplete bandit, which we adopt in our
work. However, in our framework returns are only received
at completion of leaf nodes in a hierarchical tree, and
branchings in this tree can be infinite.

C. Planners in Robotics

In [5], a general overview on task-and-motion planning
(TAMP) solvers is provided, in which decisions on investing
compute efforts are inherent. In [7] a TAMP solver was pro-
posed that allocates compute time in a round robin strategy
to various sampling based path planners, where the time is
iteratively increased. Multi-bound tree search (MBTS) [15]
introduces various levels of admissible bounds which guide
search and thereby compute investment. The sub-problems
are similar to the ones we consider here, but the search
strategy through the tree is fixed, and the computations are
not preemptible.

In [11], the problem of finding feasible keyframes in a
TAMP problem, i.e., a handover-pose or a picking-pose of a
robot, was modeled as a factor graph, and UCT was applied
to find an efficient sampling strategy. Similarly, in [4], the
TAMP problem was modelled as a factor graph, and two
algorithms to traverse the factor graph are proposed. As in
other work, the computations are not preemptible, and the
search strategy is manually designed.

III. PROBLEM FORMULATION: INFINITE COMPLETION
TREES

We first define the abstract notion of a completion tree
and later discuss how it represents our problem setting. A
completion tree is defined by a root node n0 and a successor
function succ(n, i) that returns the ith child node of n. Every
node n has two fixed properties (ĉn, Bn):
• the latent (a priori unknown) compute effort ĉn ∈ R+∪
{∞}, and

• its branching Bn ∈ N∪{∞} (i.e., number of children).
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Fig. 1. Partially expanded Completion Tree. While the underlying decision
tree has infinite branching, the state of search can be represented as a
partially expanded compute tree with incomplete nodes (dashed), complete
terminal nodes (boxes), and widening candidates at infinite branchings
(diamonds). cn indicates the total compute yet invested in a node n; yn is
the return at terminal nodes. The solver needs to decide on a next dashed
node to invest a unit compute budget σ.

The successor function succ(n, i) is defined only for integers
0 < i ≤ Bn. A node with Bn = 0 is called terminal. A
terminal node n has an additional fixed property yn:
• the latent terminal return value yn ∈ R.

Every node n in addition has a state variable cn ∈ R+, which
is the total compute invested in the node, and initialized to
cn = 0. When cn ≥ ĉn exceeds the latent compute effort,
the node is called complete.

The problem is to forward search this potentially infinite
tree under the key constraint that the compute efforts ĉn and
terminal returns yn are a priori unknown and the only way
to identify their value is to complete the nodes by investing
compute effort. Compute effort can only be invested if the
parent node is complete, and initially, only the root node n0
is complete.

In each iteration, the search algorithm decides on an
incomplete node n that has a complete parent in which a
small unit compute budget σ is invested. If cn + σ ≥ ĉn,
the node n becomes complete and cn ← ĉn; otherwise it
remains incomplete and cn ← cn + σ. To this end, a search
algorithm can build a partially expanded tree that includes
the completed nodes and their children, which represents the
decision space, see Fig. 1.

The above is an anytime, non-terminating search process.
To define an objective for search, let us index decision
iterations with t = 1, ... After t iterations, let C(t) be the total
compute effort invested in the tree so far; and conversely,
let t(Ĉ) = min{t : C(t) ≥ Ĉ} be the iteration where Ĉ
is exceeded.2 Further, let S(t) be the set of terminal nodes
(with yn > −∞) found after iteration t, and Y (t) = {yn :
i ∈ S(t)} their returns. We define the metrics:
• total compute to first solution:

Cfirst = C(min{t : |Y (t)| > 0}) , (1)

• best return at given compute Ĉ:

ybest(Ĉ) = maxY (t(Ĉ)) , (2)

• mean return at given compute Ĉ:

ymean(Ĉ) = 1
|Y (t)|

∑
y∈Y (t(Ĉ)) y . (3)

2Typically C(t) ≈ tσ, but in practice less as some completions happen
before a unit compute budget σ was consumed.



As a remark, the assumption that nodes of underlying
completion trees have fixed (deterministic) properties (latent
compute effort ĉn and terminal return yn) might seem
limiting. However, in the appendix1 A we discuss how effort-
full bandits can be represented in our formulation. We further
discuss that the notion of regret is not trivial to transfer,
which is why we use the metrics above.

Further, our assumption that each iteration invests a small
unit compute budget σ (e.g., σ = 1

100 sec) is an approxima-
tion of real time decision making on premptively pausing
computations and reassigning compute.

A. Relation to Robotic Planning

The abstract problem formulation provided above is fully
deterministic and it might be unclear how this relates to
sample- and optimization-based solvers in robotics.

The computational problem associated to a node could be
a non-linear mathematical program (NLP) or a path finding
problem. While solvers are typically randomized (e.g. when
initializing an NLP solver), we generally consider the pseudo
random seed at a node to be fixed. Thus, given the fixed
random seed, a node has a deterministic (but unknown)
compute effort ĉn to be solved. We allow ĉn = ∞ to
represent that a solver does not terminate. As in preemptive
scheduling we assume the problem solver can be paused after
compute effort σ and resumed at the next call. At termination
of the solver, the node becomes complete and we observe the
final return yn (negative cost) at terminal nodes, which can
also be −∞ if the NLP is infeasible.

Random initialization of sub-solvers is our core motivation
for considering infinite branching: Solvers often require sam-
pling streams or restarts with various random initialization
to ensure probabilistic completeness. In a completion tree
this is represented by considering the choice of random seed
as an explicit branching: branchings in our tree not only
concern which computational problem to solve next, but also
which random seed to choose to initialize the solver. Gen-
erally, anything usually represented probabilistically is, in
our framework, represented by infinite branching (including
random returns or compute efforts for a bandit).

Section V-B will explicitly define the computational mod-
ules represented by nodes when we evaluate the application
of Completion Trees to TAMP solving.

IV. EFFORT LEVEL SEARCH

When deciding on a node to invest compute, the choices
can be rather heterogeneous, e.g. between a node we have
already invested in (e.g. node 3 in Fig. 1) or a novel
node (node 11), between nodes at the same level or across
levels, or between nodes with more or less data of siblings
available (e.g. node 12 vs. 13). The challenge is to define
a single score to prioritize between such decisions. Our
approach defines effort level sets that prioritize decisions in
the tree and systematically expands along level sets. We show
completeness and that a round robin approach [7] becomes a
special case. In appendix1 D we also introduce a tree policy
approach which prioritizes decisions within a layer and uses
a tree policy as in Monte-Carlo Tree Search (MCTS) to
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Fig. 2. Illustration of effort level sets: Left with linear compute and
widening; middle with square widening penalty; right with both square.

eventually decide on an incomplete node, which helps to
relate our proposed methods to MCTS approaches and bandit
settings.

A. Widening, Deepening, and Effort Level-sets

We introduce an effort level, which combines penalization
of compute depth and widening. Specifically, we define the
single-decision effort en for node n as the sum

en = D(cn) +Wpar(n)(jn) (4)

where D(·) is a function that penalizes compute depth, and
W·(·) is a function that penalizes widening and depends on
the enumeration jn of a child3 and potentially also on the
parent par(n). Based on this, we introduce the effort-level
En at node n as the sum

En =
∑
k∈π(n) ek (5)

along the path π(n) from the root to node n, including n.
In the simplest case we might choose linear deepening

and widening penalties, i.e., en = cn + γjn, which leads to
a level set as illustrated in Fig. 2(left), where width means
the sum of enumerations

∑
k∈π(n) jk, and compute the total

compute cost
∑
k∈π(n) ck. In the illustration, search goes

deep in nodes with small enumeration jn (left edge), and
wide for shallow nodes, where deep and shallow refer to
total compute costs.

However, other choices of the effort and widening penal-
ties allow us to express other priors about the search. In
particular, at an infinite branching we may intepret children
to be i.i.d. samples of an underlying distribution, akin to
individual samples of a bandit represented by the parent
node. From Upper Confidence Bound (UCB) methods we
learn that the explorative value of taking more and more
samples from the same bandit decreases, typically with
1/
√
n. Translating this to our case we should increasingly

penalize widening at a branching as the chance of finding
better solutions becomes smaller. In essence this motivates
the option to choose alternative widening penalties that in-
crease polynomially with the enumeration, W (jn) = (jn)p.
Fig. 2(middle) aims to illustrate a quadratic choice p = 2
(but oversimplifies as it neglects that our effort is a sum of
square widening penalties rather than a square penalty of
total width).

3We assume children to be enumerated with j = 1, .. below a parent. In
the case of Bn =∞ we assume that Wpar(n)(jn) (and any other heuristic)
is non-decreasing with increasing j. For instance, when the branching relates
to a choice of random seed, we expect all children to have an equal lower
bound, as the underlying problems are i.i.d. samples of the same random
problem.



Algorithm 1 Generalized Search with incomplete nodes
Generic search scheme (akin to A*) adapted to the case
of incomplete nodes, where nodes maintain a prioritization
fn ∈ R+ ∪ ∞, and have indicator methods isTerminal
and isComplete. Further, nodes have methods WIDEN and
DEEPEN to return sibling and child nodes for expansion (see
below), and a method COMPUTE to update its state.
Input: root node, added into priority queue
Output: sorted list of solutions, initialized empty

1: repeat
2: n←pop a node with lowest fn from queue
3: insert set WIDEN(n) in queue
4: COMPUTE(n), which updates fn
5: if not isComplete(n): reinsert n in queue
6: elif isTerminal(n): append n to solutions
7: else: insert the set DEEPEN(n) of children in queue
8: until queue empty or time-out

Algorithm 2 Effort Level Search (ELS)
Equals Generalized Search with the following instances of
WIDEN, COMPUTE, and DEEPEN that are based on a node’s
effort level En and parent’s branching factor Bpar(n):

1: function WIDEN(n)
2: if cn = 0 and Bpar(n) =∞:
3: return new sibling k with

Ek = Epar(n) + ek
4: else: return ∅
5: end function

6: function COMPUTE(n)
7: invest a unit compute budget on problem n
8: increment cn by actual compute time
9: update en, En

10: end function

11: function DEEPEN(n)
12: if Bpar(n) <∞: return all child nodes k with

Ek = En + ek
13: else: return set with only first child node k with

Ek = En + ek
14: end function

Concerning the compute cost of a single problem we might
have a prior that costs up to a level c0 are normal and not
to be penalized harshly, while compute costs significantly
beyond c0 might indicate a non-convergent solver, with the
chance of finding better solutions becoming smaller and
smaller, and therefore should be penalized super-linearly, see
Fig. 2 (right). We therefore generally propose widening and
deepening penalties of the form

en = (cn/c0)pc + (jn/w0)pw + ε (6)

with parameters c0, pc, w0, pw, ε, where ε > 0 describes a
small penalty for each level, e.g., to represent the cost of
node creation itself.

Algorithms 1 and 2 describes Effort Level Search (ELS)
in terms of a generalized search scheme, which includes

widening, investing compute, and deepening. The new single
node generated via WIDEN (line 3) and DEEPEN (line 13)
with cn = 0 corresponds to the diamond nodes in figures.

B. Analysis

1) Solution optimality vs. compute path optimality vs.
search optimality: We should distinguish various notions of
optimality: The optimality of found solutions yn (and related
to this, completeness of search); the “effort optimality” of
the compute path from root to a found solution node n; and
the total effort (spent in the full completion tree) that search
required to find solutions.

A basic implication of ELS being a level set method is:
Proposition 1 (Completeness and solution optimality):

Assuming an optimal solution with finite effort level and
finite return exists, and assuming unbounded increasing
widening penalty W (·) for infinite branchings (i.e., W (j)
increases with j and limj→∞W (j) = ∞.), then ELS will
find an optimal solution in finite time.
The proof (given in appendix1 B) is straight-forward (as with
A*), showing that any terminal with finite effort is reached
with finite total invested compute. But as we distinguish
between effort and return, this does not mean that the best (in
our case, lowest return) solution is returned first. The above
only proves that it finds an optimal solution eventually. So
it would be ambiguous to call ELS optimal in a traditional
search algorithm sense. Instead, we might characterize it as
returning effort optimal solutions first.

2) Special Case: Round Robin: Hauser et al. [7] previ-
ously proposed to fairly distribute available compute to all
open jobs in a round robin manner, and interleave this with
creating new compute jobs (in our terms, widening) at the
end of each round. We show here that this can be (approx-
imately) cast a special case of ELS with linear widening
and deepening penalties. Approximately here merely means
neglecting effects that arise from the discretization unit σ
of compute budgets; we have exact equivalence if ĉn are
multiple of σ so that all compute calls make full use of the
provided unit compute budget σ.

In our completion tree representation, the round robin
scheme is easily realized by a FIFO queue of all nodes,
including the diamond node. While the previous work [7]
presented the scheme only in the flat case, our completion
tree representation generalizes directly also to hierarchical
computation. Alg. 3 describes the FIFO method; a detail is
that when a diamond node is called and remains incomplete,
it inserts itself again into the FIFO before its sibling is
inserted (lines 7 and 8). We can count rounds explicitly
by imagining a new marker being inserted into the FIFO
whenever a marker is popped – each round calls all open
nodes once. The proof (appendix1 C) shows by induction that
at the end of round N , for each node n in the FIFO, the sum
of the number of compute steps

∑
k∈π(n) ck/σ along its path

π(n) plus the sum of widening enumerations
∑
k∈π(n) jk

along its path equals N ,

N =
∑
k∈π(n) ck/σ +

∑
k∈π(n)(jk − 1) . (7)



Algorithm 3 Round Robin
Shown to be (approximately) equivalent to ELS with linear
widening and deepening penalties and no effort heuristics
Input: root node, added into FIFO queue
Output: set of solutions, initialized empty

1: repeat
2: n←pop queue
3: if cn = 0 (n is diamond): flag = true, else: flag =

false
4: COMPUTE(n), which updates fn
5: if not isComplete(n): reinsert n in FIFO
6: elif isTerminal(n): insert n in solutions
7: else: insert (diamond) child in FIFO
8: if flag: insert sibling k in FIFO
9: until queue empty or time-out

The round number N therefore is equivalent to an effort
level with linear compute and widening penalty, namely c0 =
σ, pc = w0 = pw = 1, ε = 0.

V. EXPERIMENTS

We perform experiments on three problem types:
• On synthetic test problems (described below) we evalu-

ate the robustness of the method to find a good solution
in random settings, and to find a needle-in-a-haystack
solutions hidden in a costly compute line of the tree.

• On Logic Geometric Programs and puzzle problems
we evaluate the robustness for sequential robotic ma-
nipulation planning.

• On a Bandit problem (in appendix E) we evaluate the
tree policy version of our method.

A. Synthetic Problems

We consider an infinite decision tree of fixed depth d
and infinite branching at each level. Every n has the latent
compute effort ĉn ∈ R+, but in addition a latent scalar
ŷn ∈ R+. The return y received at terminal nodes (at depth
d) is the sum of all ŷn from root to leaf (ŷroot = 0) plus
noise ε ∼ N (0, σ2). In that way, although the value ŷn at
non-terminal nodes is never observed, they do contribute to
the return at terminals and thereby imply correlations within
branches. We generate the following synthetic problems:

a) Random(d): Given a fixed depth d, for every
(queried) node we uniformly sample ĉn ∼ U([1, 10]) and
ŷn ∼ U([0, 1]).

b) SingularLine(d,t,c): Problem parameter d fixes the
depth of the infinite decision tree. Parameter t identifies the
tree path which at each branching takes the t-th decision.
E.g., t = 1 would be the first found with depth first search.
All terminal nodes have return y = 0, except for the single
terminal node of the t-line (needle in a haystack) which
returns y = 1. Further, all nodes have equal latent compute
cost ĉn = 1 except for all nodes on the t-line, which have
(higher) latent compute cost ĉn = c.

With SingularLine and c = 10 we can investigate whether
the method is robust to finding a solution also when hidden
in a costly compute path.
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problem and methods are deterministic, no errorbars are given; the variation
of problem parameters t and d is to indicate robustness of result.

c) Results on Random: Fig. 3 displays the best solution
found, ybest(C), in a random problem of depth 3 and infinite
branching at each level over the total invested compute effort.
The curves display averages over 10 runs on different random
problems. We find that ELS with higher coefficients to
penalize compute and branching systematically outperform
RoundRobin.

d) Results on Singular Line: Fig. 4 displays total com-
pute, Cfirst, required to find the single best terminal in the
SingularLine problem, for varying depth d and target branch
t. The latent compute cost for nodes along the target path is
fixed to c = 10 (whereas all other nodes have ĉn = 1). ELS
with higher coefficients pw, pc finds the singular solution
significantly faster than RoundRobin.

Appendix E evaluates a tree policy version of ELS also
on synthetic effort-full bandits problems.

B. Robot Manipulation Benchmarks
We tested the method on 8 different Task-and-Motion

Planning problems, more specifically, on finding solutions to
the Logic-Geometric Programming (LGP) [14] formulation
of these TAMP problems. In this formulation, nodes on
different levels of the completion tree represent different
computational problems that “assemble a solution”, follow-
ing the previous work [15]:



Fig. 5. 8 LGP sample problems.

• Nodes on the first level represent a particular choice of
skeleton. To complete a node, an A*-solver needs to
find a novel skeleton that solves the logical constraints.
There are typically infinitely many skeletons that fulfil
the constraints, thus the first branching is infinite.

• Nodes on the second level represent a particular ran-
dom seed for waypoint solving, i.e., finding waypoints
that fulfill the mode switch constraints implied by the
skeleton of the parent node [15]. The random seed
determines the randomized initialization of this NLP,
which includes random initial placements or relative
transforms that relate to random object grasps or place-
ments. As these NLPs have many local optima, many
random seeds will lead to infeasibility, and their run
time varies without guarantee of termination. Only
some NLP solutions will lead to feasible down-stream
path finding problems. Our solver therefore needs to
systematically explore alternative random seeds, leading
to an infinite branching at this level.

• Nodes on the third and following levels represent path
finding problems: to complete a node a RRT path finder
needs to find paths to connect the waypoints. Again, the
run time varies and there is no guarantee of termination.

• Nodes on the last level represent a final motion op-
timization NLP which takes the RRT path pieces as
initialization. The completion of these nodes requires
most compute effort and again, there is no guarantee of
termination or robust convergence.

In this setting compute effort is identical to real time.
All solvers (RRTs and NLP solvers) are implemented in a
“stepping” manner, meaning that when a node is queried,
only one more step (e.g., Newton step) is performed and the
compute effort (real time) measured. In this rather large tree
of possible computations our solver needs to decide where
to invest compute effort to most efficiently find solutions.

Fig. 6 displays the time to finding a first solution for the 8
problems. The box plots show distributions over 10 random
runs. Run time is capped at 120 seconds. RoundRobin
consistently performs worse; for many problems a choice
of pw = 3, pc = 2 or pw = 3, pc = 1 more robustly finds
solutions quickly, showing that stronger penalization of width
is beneficial for find TAMP solutions.

Fig. 7 displays data from the same runs differently, il-
lustrating the number of solutions found within the limit of
120 s. RoundRobin consistently performs worse; for some
of the harder problems ELS does not always find a solution
within 120 s.
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Fig. 7. LGP Solutions per Time (higher is better): The number of solutions
found during 120 s, from the same runs as for Fig. 6. Note that for ’2blocks’,
#solutions/10 is displayed.

VI. CONCLUSION

We introduced a novel problem formulation, completion
trees, to represent the challenge of deciding where to in-
vest compute in alternative paths to “assemble” a solution
of robotic manipulation planning problems. Our algorithm,
ELS, is a first step to systematically and robustly allocate
compute, balancing (computation) depth with (branching)
width. Even if sub-problems are NLPs prone to local optima,
by introducing branching for potentially infinite choices of
random seeds we gain completeness of the overall solver.

However, our proposed method mostly focuses on system-
atic compute allocation in the case of infinite branchings, but
hardly exploits the collected data to further inform search.
As the problem formulation generalizes previous bandits,
budgeted bandits, and MCTS problem formulations we see
great potential to combine strategies from these areas with
the controlled widening of our method to better exploit the
available data on both returns and invested compute.

Further, the current method is limited in that it cannot
exploit anytime solvers within nodes, as there is no strict
time of completion and they could return better solutions
with more compute.
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Fig. 8. Budgeted Bandits case. Special case with three bandits represented
by nodes n = 2, 3, 4, and drawing samples y from bandits requires compute
effort c with unknown distribution pn(c).

APPENDIX

A. Budgeted Bandits as a Special Case

Our problem setting can be used to represent basic bud-
geted bandits [17] and bandits-with-knapsacks [16], [1],
where (in their simplest version, with only one resource)
each bandit n has a latent cost distribution pn(c), and each
time n is queried, one has to spend effort c ∼ pn(c) to
draw a sample y ∼ pn(y). Fig. 8 shows a Completion Tree
representation, where the finite number of bandits are direct
children of the root, and drawing samples is represented as
infinite branching below each bandit, each with latent com-
pute effort c ∼ pn(c). Existing budgeted bandit formulations
do not consider pre-emptive scheduling, which corresponds
to assuming no compute limit, σ =∞, when investing in a
new sample.

By casting budgeted bandits as a special case of our
problem formulation we first see how we generalize over the
previous formulation: 1) We allow for pre-emptive schedul-
ing, 2) we consider hierarchical problems, similar to how
UCT generalizes UCB1, 3) we may have infinite bandits
on the base level, and 4) bandits themselves may require
compute for their completion, rather than only sampling from
them.

Conversely, this special case formulation makes explicit
in what sense we are faced with decision making under
uncertainty, and we can draw on existing budgeted bandit
and UCT literature to derive decision policies also for our
problem.

Concerning the objective, in bandit settings the standard
definition of regret is

∑T
t=1[maxaRa,t − Rt], where a

is the optimal decision in iteration t. In standard settings
(including budgeted bandits) any decision in each interation
t generates a sample, and thereby a return Rt, and the
expectation of maxaRa,t is stationary (i.e., independent of
t). However, in our setting we have a finite compute budget
σ and many iterations will yield no return at all as terminal
nodes are not complete yet. Only when a terminal sample
node becomes complete, and among them from an optimal
bandit, we may yield a sample with maximal expectation
maxaRa,t. Therefore, optimal decisions often first have to
invest compute to yield no return, before maximal expected
return is possible.

The regret can also be interpreted as “area above curve
Rt” (clipped at Rmax from above). We defined ybest(C) and
ymean(C) as functions of compute instead of interation, and

can therefore transfer the concept of regret as area under
curve (clipped at some ymin from below). Note that this
equals to Cfirst if non-solutions have return 0 and a solution
return 1.

B. Proof of Proposition 1

Proof: Let k be a leaf node representing an optimal
solution with finite effort level Ek < ∞. As ELS is a level
set search it will complete k before any other node with
effort larger than Ek. Let N be the number of all nodes (in
the infinite decision tree) that have effort ≤ Ek. We need
to prove that N is finite, as this implies finite total effort
≤ NEk and therefore finite time.
N is largest if there are no compute costs, i.e., all nodes

are completed at first query with cn = 0. In this case, all
nodes will have effort En ≥ dnε, with dn the node’s tree
depth, and the maximal depth for a node with En ≤ Ek is
dn = Ek/ε. On the other hand, as the widening penalty is
unbounded increasing, there exists a maximal width w such
that W (w) ≥ Ek. A tree with maximal depth and width is
finite, proving N is finite.

C. Proof of Round Robin Equivalence

Proof: We neglect compute budget discretization in the
sense that we assume ĉn are multiple of σ. At round N = 0,
only the root node with cn = 0 and jn = 1 exists, confirming
N = cn/σ+(jn−1). By induction: In any future round, the
nodes inserted back into the FIFO are either yet incomplete
nodes that already were in the FIFO but have incremented cn
by σ, or diamond siblings that have a widening enumeration
incremented by one, or diamond children that inherit the
additional compute step of the just completed parent but no
additional widening step (which explains jk − 1). All cases
increase the quantity

∑
k∈π(n) ck/σ +

∑
k∈π(n)(jk − 1) by

1, making it equal to the round number N .

D. Tree Policy-Based Solvers

In UCB/UCT, we get a return in every round. In our
settings, most compute decisions will not complete a ter-
minal node and therefore receive no return, which is why
UCB/UCT is not directly applicable. However, the general
concept of using a tree policy to decide on leaf nodes can be
combined with ELS to address bandit settings. In particular,
in queue-based search schemes – as our Generalized Search
(Alg. 1) – all nodes in the queue have their fixed level fn
which is not influenced by data observed at other nodes,
e.g., siblings or nodes in the same sub-branch. In contrast,
in tree policy approaches, data collected in sub-branches is
backed up to influence decisions (and thereby prioritization)
for all nodes in the sub-branch, which allows for the type of
learning and sharing of prioritization of whole sub-branches
that underlies UCT.

To demonstrate the application of effort levels to bandit
settings we therefore propose the following tree policy that
applies to general completion trees with infinite branchings,
and thereby extends UCT to also decide on widening rather
than only descending (see Fig. 1).



Algorithm 4 Generalized Tree Policy Search
Generalized MCTS variant...
Input: root node
Output: list of terminal nodes

1: repeat
2: init n as root
3: repeat n← TREEPOLICY(n) until n is incomplete
4: insert WIDEN(n) in queue
5: COMPUTE(n), BACKUPCOMPUTE compute effort c
6: if not isComplete(n): – nothing to do –
7: elif isTerminal(n): BACKUPSAMPLE sample y
8: else: expand tree by the set DEEPEN(n)
9: until time-out

Algorithm 5 ELS-TreePolicy
Equals Generic TreePolicy Search for specific instances of
TREEPOLICY, BACKUPCOMPUTE, and BACKUPSAMPLE.
π(n) is the path of nodes from n to root.

1: function BACKUPCOMPUTE(n, c)
2: ∀k ∈ π(n) : C̄k ← C̄k + c
3: end function

4: function BACKUPSAMPLE(n, y)
5: ∀k ∈ π(n) : Ȳk ← Ȳk + y, nk ← nk + 1
6: end function

7: function TREEPOLICY(n)
8: k ←incomplete child of n with lowest effort level
E(k)

9: if k = ∅ (no incomplete child) or E(k) > Ē(n):
return complete child with highest UCB1 score

10: return k
11: end function

First, using standard backups for both, compute efforts and
sample values (see Alg. 5), we maintain at each node the sum
C̄n of compute invested in this node and all descendants,
and the sum Ȳn and count Nn of all samples observed at
descendants. Note that, for incomplete nodes cn = C̄n. We
now use the total compute C̄n to define the effort

en = D(C̄n) +W (jn) , (8)

For incomplete nodes this is as before; but for internal nodes
this includes penalization of compute at descendants.

At a given parent node n, the tree policy has to decide
on a child k, which may be an incomplete node (including
diamond), or complete node without data Nk = 0, or
complete node with data Nk. Again, the challenge is to
define a single score to coherently decide among these
heterogeneous choices. We propose a two stage approach:
First, let

ĵ = argmin
k

ek (9)

be the child with minimal effort (which is defined for all
children, no matter if complete or with data). Further, let

k̂ = argmin
j:Nk>0

Ȳk/Nk + β
√

2 lnNn/Nk (10)
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Fig. 9. Bandit Problem (higher is better): The avarage return (i.e.,
mean of all returns collected until compute effort ctot) on an infinite
branching random Bandit problem. The hypothetical best bandit (from
infinite alternatives) gives returns uniform in [0.5,1]. Curves show averages
from 10 runs on different random bandit problems, with standard deviations
for best and worst.

be the UCB1 choice for complete children with data. If no
child has data, or if eĵ < D(C̄n) (the compute effort for the
parent n), the tree policy decides for ĵ, otherwise the tree
policy decides for k̂.

E. Evaluation on Bandit Problems

We evaluate the ELS-TreePolicy on random infinite com-
pletion bandit problems, which in our framework corre-
sponds to a two-level tree with infinite branching at both
levels (first level is the choice of bandit, second level the
sample). Similar to the Random problem above, bandits have
a random latent compute cost uniform in [1, 10] and a latent
mean return yn ∼ U [ 14 ,

3
4 ]; sampling adds uniform noise

U [− 1
4 ,

1
4 ] to give a return in [0, 1]. When the best bandit is

found and completed, the maximal expected return is 0.75.
Fig. 9 displays the mean return, ymean(C) over the to-

tal compute investment. As expected, RoundRobin only
achieves the same average return as picking a random
bandit (0.5). Interestingly, ELS-TreePolicy performs best
when choosing a sub-linear coefficient to penalize compute,
pc = 0.5.
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